

Nuclear Compact Reactors

Hydraulic design and validated calculation tools of the Jules Horowitz Reactor (JHR) Reflector

IGORR 2017 – James YAGAPIN

Nuclear Compact Reactors

77

TechnicAtome

Introduction

- TechnicAtome has designed the Jules Horowitz Reactor (JHR): a 100 MW Research Reactor on behalf of CEA
- Numerous experimental locations with high performances and a strong flexibility, especially, in the reflector
- JHR reflector requirements have led to design a complex reflector with several possible configurations
- Preliminary thermal hydraulic sizing allowed to define the hydraulic operating domain strongly reduced by :
 - The calculation uncertainties
 - The margins to be considered
- For final sizing, calculation tools have to be validated on the reflector geometry

Contents

1 JHR reflector requirements and design options

- 2 Constraints on JHR reflector thermal hydraulic sizing
- **3** Hydraulic description of the JHR reflector
- 4 Calculation tools
- 5 Process for calculation tools validation

6 Conclusion

JHR reflector requirements and design options

Requirements	Design options
 Neutronic performances in-core and in-reflector A wide range of neutron flux and spectra for irradiation devices Isotopes production rigs 	 Beryllium modular reflector A lot of irradiation locations available dispatched in 9 sectors Zircaloy[®] gamma shields installed in some reflector area
 Simulate transients occurring in incidental or accidental situations Medical radioisotope production (MOLY) 	Displacement systems in different locations
Capability to load and unload experimental devices when reactor is operating	 Reflector structures and irradiation devices cooled by the open pool cooling circuit <u>Downward cooling flow rate</u> adopted

Constraints on the reflector thermal hydraulic sizing

Pool cooling circuit architecture: redundant pump, plate-based heat exchanger, <u>reflector</u> located at the pump suction

For the final thermal hydraulic sizing, two actions are undertaken:

- Adjust the necessary cooling flow rate crossing reflector structures and experimental devices
- Reduce the calculation tools uncertainties

Hydraulic description of reflector

Calculation tools

- CATHARE (<u>Code for Analysis of Thermal-Hydraulic during an Accident of Reactor and Safety Evaluation</u>):
 - Developed by CEA, EDF, IRSN and AREVA
 - Dedicated to thermal hydraulic analyses
 - Based on a "2 fluids 6 equations" model

CATHARE is used to perform the reflector thermal-hydraulic sizing

STAR CCM+:

- Computational Fluid Dynamics (CFD) tool developed by Siemens PLM Software
- Multidisciplinary platform, used by engineer to solve complex industrial problems
- Reference CFD code at TA: support in safety studies, design assistance

STAR CCM+ is used to characterize the hydraulics flows in the water boxes and to design the diaphragms

General process - Calculation tools validation

Sectors water boxes – Experimental process

The aim of experimental tests is to qualify a CFD calculation scheme (STAR CCM+)

First step: mesh rules and turbulence models

- One mock-up representing the most constrained geometry of water boxes *
- Different configurations have been tested *

Back view

Second step: validation of CFD calculation scheme based on a blind test

One mock-up representing a sector water box with a different geometry *

Sectors water boxes – diaphragms sizing

CFD calculation results: two experimental configurations

Diaphragms diameters are well predicted with a maximum calculation uncertainty lower than 8% on the target head loss

Without qualification of CFD code: 30% calculation uncertainties retained

Conclusions

- JHR reflector is intended to provide high flux performances and a strong experimental flexibility
- The challenge of the thermal-hydraulic sizing is to ensure the reflector cooling with the expected flexibility
- For final thermal hydraulic sizing, it is important to define with accuracy the hydraulic operating domain
- All the actions undertaken for calculation tools validation have led to:
 Reduce significantly the calculation uncertainties
 Finalize the reflector design (all the diaphragms)

