DE LA RECHERCHE À L'INDUSTRIE

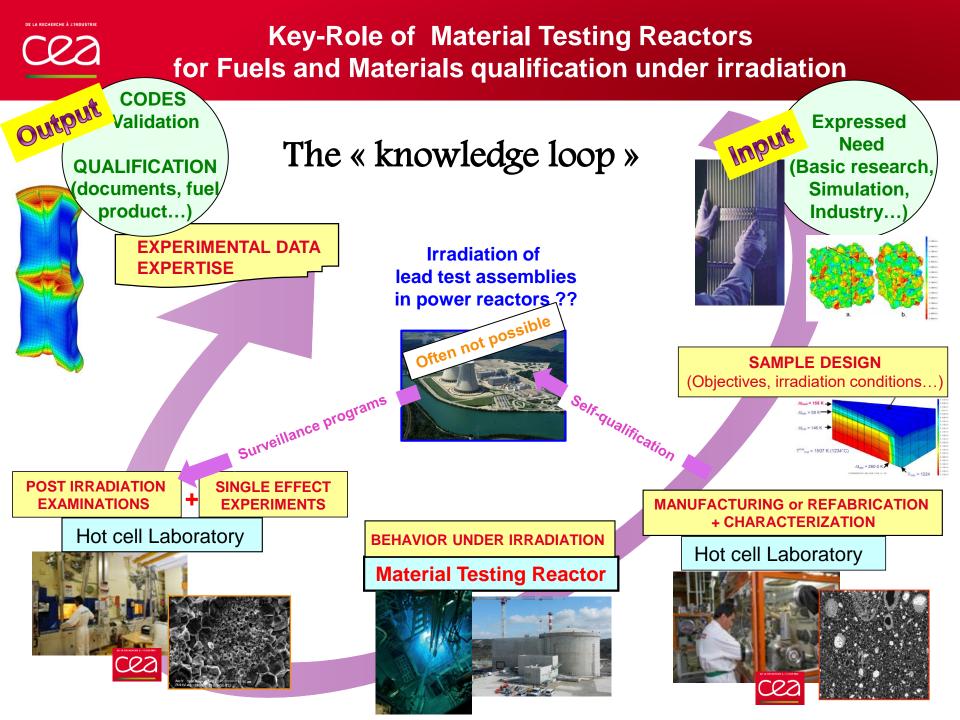
EUROPEAN COMMISSION

Networking Advanced Experimental Capacities in Operating European MTRs for Qualification of Innovative Fuels and Materials: The FIJHOP R&D program proposal

Daniel Parrat, Gilles Bignan, Catherine Santucci, Benoit Tanguy,Christophe BlandinCEA, Nuclear Energy Division (FR)	
Abderrahim Al Mazouzi	EDF, Research and Development (FR)
Marek Miklos,	Centrum Vyzkumu Rez s.r.o. (CZ)
Susan Ortner	National Nuclear Laboratory Ltd. (UK)
Brian Boer S	Studiecentrum voor Kernenergie, SCK•CEN Mol (BE)
Lida Magielsen	Nuclear Research and Consultancy Group, NRG (NL)
Elio D'Agata Joint R	Research Center, European Commission, JRC/EU (EU)
	daniel.parrat@cea.fr

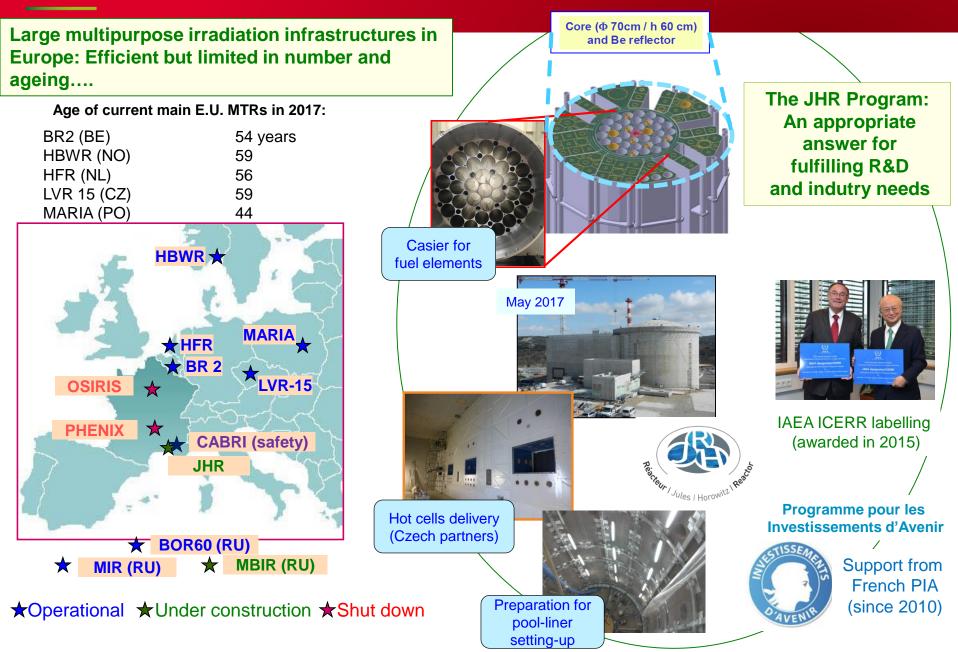
18th IGORR Conference, 3-7 December 2017, Sydney (AU)

OUTLINE


Material Testing Reactors (MTRs) as support of the qualification process of nuclear fuels and materials

□ The Jules Horowitz Reactor Consortium

□ The FIJHOP initiative:


- Context and objectives
- Description of the two scientific proposals: Fuels and Materials

Current status of FIJHOP and future steps

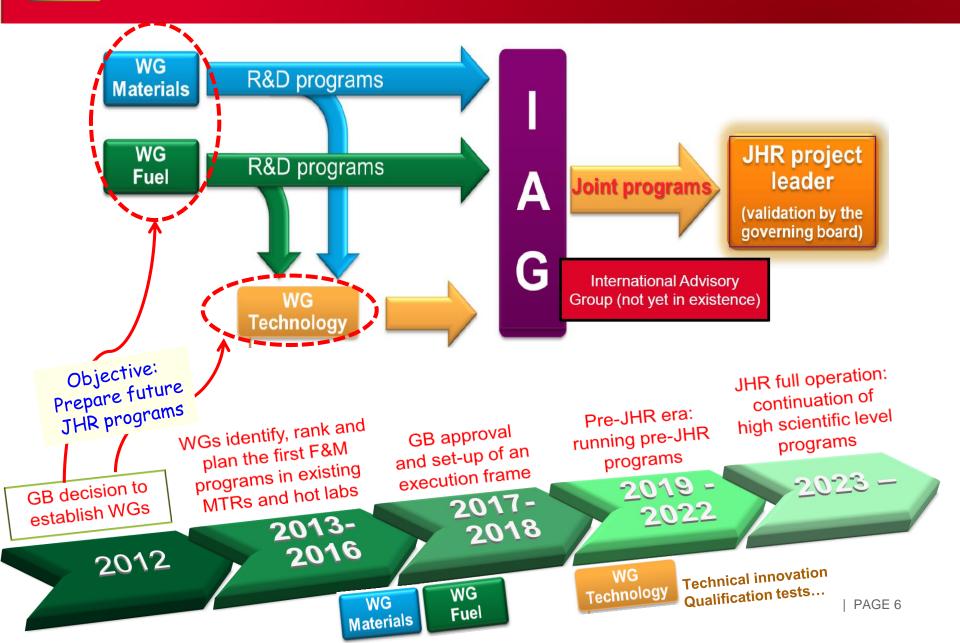
DE LA RECHERCHE À L'INDUSTR

Situation of main MTRs in Europe

JHR Consortium partnership for construction and operation: Research centers, industrial companies and international organizations

- CEA = Owner & nuclear operator
- JHR Members owners of guaranteed access rights in proportion of their financial commitment to the construction

***** Open to new member entrance until JHR completion


Consortium managed by a Governing Board which will rely on an International Advisory Group (IAG) for experimental programs selection and implementation

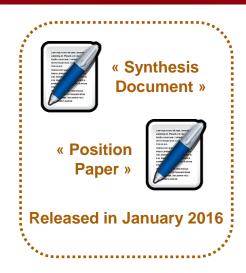
DE LA RECHERCHE À L'INDUSTR

JHR Working Groups

How to reinforce the irradiation service offer in Europe: The FIJHOP initiative

Outputs from the 3 JHR WGs work

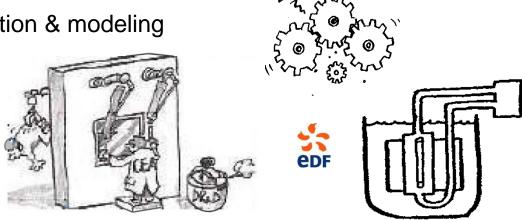
- ✤ An irradiation program lasts from 3 to 10 years...
- ✤ A whole qualification program for a new fuel product ~15 years....
- => A long-term vision is mandatory:
 - ✓ For programs (e.g. Accident Tolerant clads and Fuels ATF...)
 - ✓ For irradiation infrastructures: high safety level, performances...


Networking existing European MTRs and Hot Labs through advanced joint programs is a relevant answer for assessing complex scientific issues with operational applications:

- ✓ Takes profit from the MTR's complementarity
- ✓ Is beneficial for preparation of JHR future programs

The FIJHOP Initiative

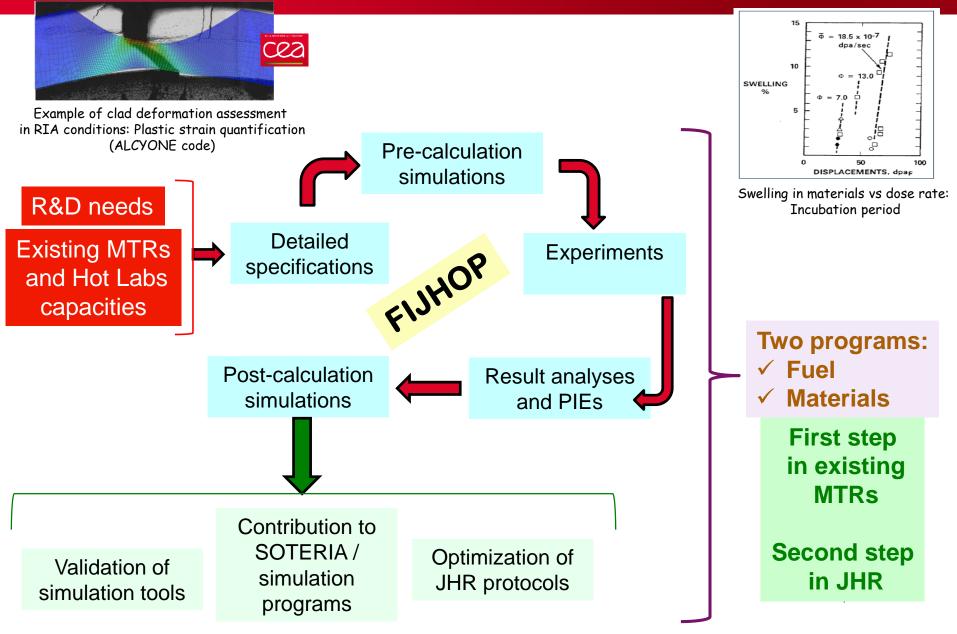
Foundation for future International Jules HOrowitz experimental Programmes


WGs meeting at VTT in Espoo (FI) November 2017 Temperature lower than in Provence...

→ FIJHOP Initiative vision:

To build a pilot multilateral experimental program addressing key technology gaps on nuclear fuel and structural materials, gathering:

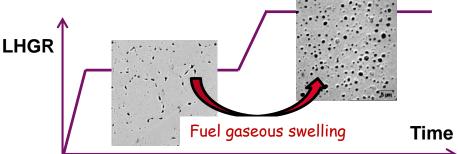
- ✓ Scientists from advanced simulation & modeling
- ✓ Material Testing Reactors
- ✓ Hot cell Laboratories



→ FIJHOP Initiative is expected to:

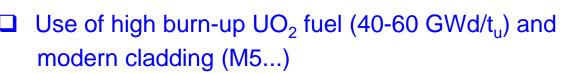
- ✓ Develop experimental tools to address challenges on current and future irradiated fuel and material development along with the appropriate expertise
- Contribute to the development and qualification of advanced models of Fuels and Materials behavior under irradiation
- Tackle scientific/technological gaps to enable later on JHR to deliver highly reliable data

DE LA RECHERCHE À L'INDUSTRI

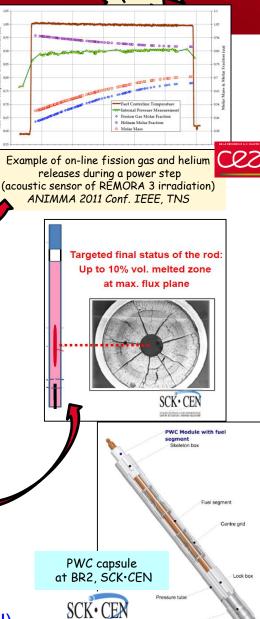

FIJHOP Content : Advanced experiments coupled with up-to-date multi-physics simulation

Improving understanding of mechanisms involved in power transients and having an impact on clad loading

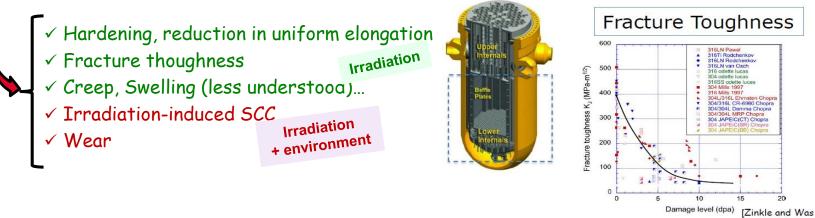
- Fuel thermal expansion
- Fuel gaseous swelling
- Fission gas release
- Fuel volume change at melting

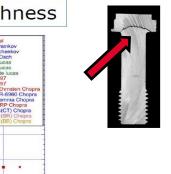

Quantification of them through an experimental separate effect approach

- Dominant phenomenon versus LHGR and BU ? Activation threshold(s) ?
- Effect on clad strain and relation with material properties
- Industrial fields covered by the proposed experiments
 - Modeling of fuel rod behavior during long-lasting transients (e.g. AOOs)
 - Nucleate boiling onset => Higher linear heat rates / higher pellet and clad temperatures
 - Maintain or relax some NPPs operational constraints (power change rate...) while preserving clad reliability and safety


Example of fuel pellet strain during a power ramp test with ALCYONE code

FIJHOP-Fuel: Experiment implementation


- Large available quantity of fission gases for provoking a significant clad deformation
- On-line measurement of interest parameters
 - Internal gas pressure (FGR kinetics)
 - Fuel central temperature
 - Other versus device possibility and qualified instrumentation
- To conduct successive power plateaux up to high values of LHGR (up to > 60 kW/m)
 - Discrimination of mechanisms + achievement of rod internal equilibrium (gas pressure)
 - Prohibit clad failure occurrence
 - Reach incipient fuel melting in the central part of the pellet
- First experiment in a MTR offering an available irradiation device and suitable operation authorizations
- □ NDE pre- and post-test (e.g. LECA, CEA and LHMA, SCK•CEN)



Effect of neutron flux and spectrum on degradation of internals components

- LWR internal structures support the core, fix fuel assemblies in position, distribute coolant flow, shield reactor pressure vessel...
- Structural integrity degrades under lifetime doses of ~ 10 dpa (core barrel) or ~100 dpa (baffle-former bolts)
- No surveillance program (ageing monitoring based on MTR/FR irradiations + PIE)

PAGE 12

Key requirement is to understand and quantify the transferability of data from MTR/FR to LWR operational conditions

Neutron flux ratio R_s' = {"thermal" / "fast"} mastered

{E> 0.1 MeV / E> 1MeV}

(2013)]

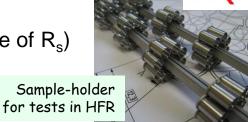
- Neutron flux ratio $R_s = \{\text{"epithermal + fast" / "fast"}\}$ effect to be studied in the range 2 5
- Modelling tools to describe microstructure evolution vs irradiation conditions
- Damage per "fast" neutron, but also H, He production : e.g. ⁵⁸Ni(n,He)⁵⁵Fe

FIJHOP-Materials: Experiment implementation

- Irradiate susceptible austenitic steel (AISI 304) in 2-3 MTRs with tailored neutron spectra (e.g. HFR...)
 - Portions of capsules shielded from thermal neutrons (large range of R_s)
 - ✤ Aiming for T_{irr} ~370-380°C with thermal gradient < 10°C</p>
 - Neutron flux > 10^{14} n/cm².s (E > 1 MeV) and dpa > 5

Well-known irradiation conditions / location in MTR

- In-pile thermocouples, dosimeters,
- State-of-the-art real time neutron flux measurement: FNDS


Latest modelling tools

- To compare calculated values of neutron flux, dpa, gas production, bubble formation, gamma heating etc.
- Benchmarking and definition of best practices for describing environment

PIEs (5-6 hot cell Labs)

- Mechanical properties: tensile tests at Room T and T_{irr}, fracture thoughness
- ✤ Microstructure evolution : SEM, TEM.....

Comparing PIE results with prediction of multi-scale modelling simulations PAGE 1

Irradiation

capsule

in LVR-15

fissile material depletion

CRS

- FIJHOP is a relevant and innovative initiative for gathering European MTRs and hot cell laboratories on common topics bridging the gap between R&D and industry
- Strong support / large scale benchmarking of up-to-date modelling:
 - Pre- and post-calculation of experiments,
 - Transposing results to power reactor conditions
- Proposal made by the JHR WGs and supported by partners from outside the JHR Consortium. Will start as soon as additional funding is available
- □ A new work frame is under construction:
 - Possibility considered for submitting a proposal at a next H2020 call (in 2019)
 - And/Or to integrate it in another program within the Nuclear Science Committee (NSC) of the OECD/NEA

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Département d'Etudes des Combustibles (DEC) Centre de Cadarache 13108 Saint Paul lez Durance Cedex Nuclear Energy Division (DEN)

Etablissement public à caractère industriel et commercial R.C.S Paris B 775 685 019