IGORR Conference / TM on Research Reactor Ageing Management, Refurbishment and Modernization, May-June 2021

CODED APERTURE TECHNIQUE FOR CHARACTERIZATION AND LOCALIZATION OF RADIOACTIVE HOT-SPOTS

SIGNAL TO NOISE RATIO OPTIMIZATION FOR EXTENDED SOURCES

IOANNIS KAISSAS GREEK ATOMIC ENERGY COMMISSION

In short...: Exploit Parallax phenomenon of the shadowgrams of two γcameras with Coded Apertures

Capable for:

- O 3D localization
- Resolving two radioactive spots in 3D
- Resolving photon energy

Two CdTe γ-cameras

Visible spectrum cam

⁵⁷Co radioactive source

From Pinhole Aperture to Coded Aperture

From Shadowgram to Point Spread Function (PSF)

The correlation of Shadowgram with G matrix produces the Correlation Matrix

PSF: Point Spread Function ACF: Auto Correlation Function PSLA: Point Source Location Accuracy SNR: Signal to Noise Ratio AR: Angular Resolution = =FWHM of PSF

Modified Uniformly Redundant Arrays (MURA) – No Two Holes Touching - No Two Obscures Touching

	Mask Type	7R-5600	19R-2000	19R-1958	19R-1821
	Mask Rank – Basic Pattern	7x7	19x19	19x19	19x19
	# of elements	13x13	37x37	37x37	37x37
	Shape of elements	Cylinder 2mm	Sphere	Sphere	Sphere
-	Diameter of elements (mm)	5,6	2,0	1,7	1,7
	Pitch of elements (mm)	5,6	2,0	1,958	1,821
	Active Area (mm ²)	72,8x72,8	74,0x74,0	72,19x72,19	67,23x67,23
ţ	Ideal Source Distance (mm)	~4000	~500	308	160

Image Quality Indices vs Z source

For the 2 γ -cameras system: • SLA

For a single γ -camera 19R-1821: FWHM 18 **SNR**

 \bigcirc

For a single γ -camera 19R-1958:

Image Quality Indices vs Extension of Hot-Spots

2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sigma of source distribution (mm)

1

0 0

 $imes 10^4$

1.5

0.5

Signal to Noise Ratio vs Extension of Hot-Spots

EXP

Fast Fourier Transform 2D

Reduction of intrinsic noise with Kernel filter

Correlation matrix with intrinsic, element-wise noise

filtering

Correlation matrix with reduced intrinsic, elementwise noise

Reduction of intrinsic noise with Kernel filter

Localization Accuracy:

<1% for point sources</p>

<3% for extended hot-spots
Improved even more with appropriate calibration at ideal Zsource
Spatial Resolution:

<2,5cm for mask 19R-1821
<4cm for mask 19R-1958
even for extended hot-spots and with wide FCFOV_s

Sensitivity – SNR for:

Accurate Localization of 300MBq hot – spots with counting time < 3 sec.

FUTURE Plans 3D Imaging of extended hotspots Evolution of P4DI to implement

the Coded Aperture Technique in real field situations

Kaissas, I., Papadimitropoulos, C., Potiriadis, C., Karafasoulis, K., Loukas, D., & Lambropoulos, C. P. (2017). Imaging of spatially extended hot spots with coded apertures for intra-operative nuclear medicine applications. Journal of Instrumentation, 12(1), C01059–C01059. <u>https://doi.org/10.1088/1748-0221/12/01/C01059</u>

Papadimitropoulos, C., Kaissas, I., Potiriadis, C., Karafasoulis, K., Loukas, D., Lambropoulos, C. P. (2015). Radioactive source localization by a two detector system. Journal of Instrumentation, 10(12), C12022–C12022. <u>https://doi.org/10.1088/1748-0221/10/12/C12022</u>