TRTR & IGORR Research Reactor Conference June 18-22, 2023 College Park, Maryland USA

Suki Park

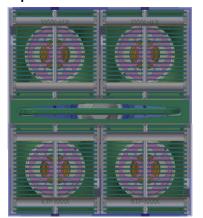
Korea Atomic Energy Research Institute

Background and Objectives

Background

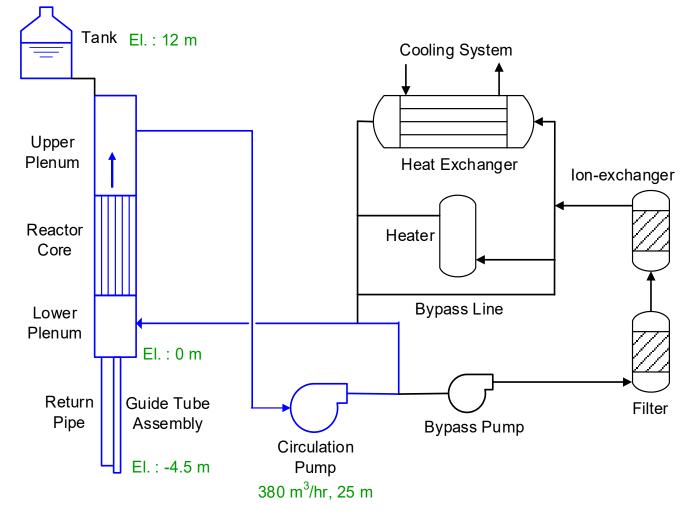
- Developing a new Reactor Shutdown System (RSS) for research reactors
 - ✓ Plate type fuels
 - ✓ Upward flow in the reactor core
 - ✓ Thermal power from 10 to 30 MW
- Installed a facility for performance and endurance tests of the RSS
- Manufacturing the prototype of the RSS
- Carry out performance and endurance tests this year

Objectives


- Develop a RELAP5 modeling on drop tests of the Control Plate Assembly (CPA)
- Assess the effects of design variables on the drop speed and time of CPA
 - ✓ Weight of CPA
 - ✓ Flow area of the return pipe from the guide tube assembly to the lower plenum
 - ✓ Hydraulic load caused by the core differential pressure

Test Facility and Reactor Shutdown System

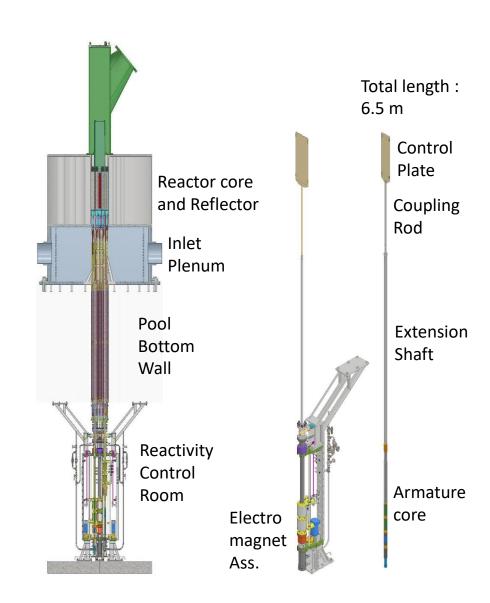
Photo of Test Section



Top view of Test Section

Test Facility

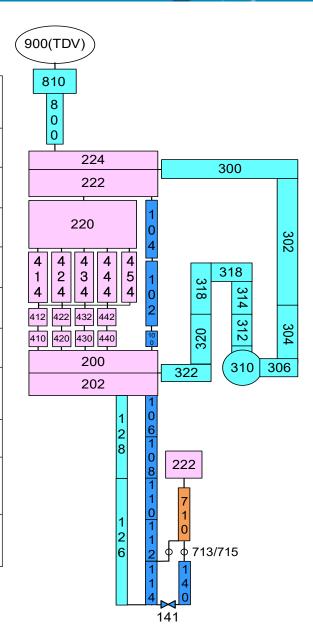
Schematic Diagram of Test Facility


Test Facility and Reactor Shutdown System

Reactor Shutdown System

- Control Plate Assembly (CPA)
 - ✓ Control Plate
 - ✓ Coupling Rod
 - ✓ Extension shaft
 - ✓ Armature core
- Guide Tube Assembly (GTA)
 - ✓ Guide for moving the CPA
- Electromagnet Assembly (EA)
 - ✓ Hold the CPA in normal operation
 - ✓ Release the CPA in emergency condition
- Control Drive Assembly (CDA)
 - ✓ Move up and down the electromagnet assembly in power operation

Functions of RSS


- Regulate the reactor power in normal operation
- Shutdown the reactor in emergency

Modeling of Test Facility and Drop of CPA

Node Diagram of RELAP5 for Test Facility

Nodes	Hydraulic Components of RELAP5	Descriptions
200, 202	Branch	Lower plenum
410~444	Single volume, Pipe	Grid plate, 4 Fuel assemblies
454	Pipe	Gap flow path
220~224	Branch	Upper plenum
300~322	Pipe, Pump	Primary fluid system
800, 810	Pipe, Branch	Water tank, pipe
100~114, 140	Single volume, Pipe	Flow path between the CPA and GTA
713, 715	Time dependent junction	Drop speed of CPA
141	Solenoid valve	Simulating the hydraulic damping by varying the flow area
126, 128	Pipe	Return pipe from the GTA to the lower plenum

Modeling of Test Facility and Drop of CPA

Modeling on the Drop of CPA

Force Balance

$$M_{S} \frac{dv(t)}{dt} = M_{S} g + \sum P_{i}(t) A_{i} - \sum P_{j}(t) A_{j}$$

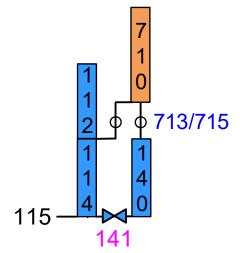
: Mass of CPA $M_{\rm s}$

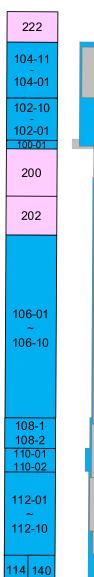
 $\sum P_i(t)A_i$: downward hydraulic force

 $\sum P_i(t)A_i$: upward hydraulic force

•	Drop	Speed

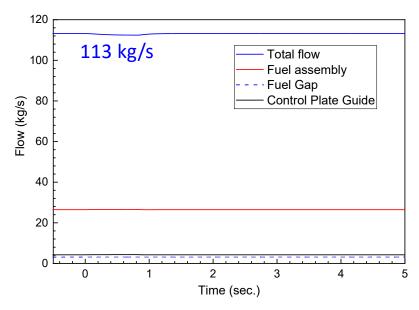
$$v(t) = \frac{1}{M_s} \int_0^t M_s g + \sum P_i(t) A_i - \sum P_j(t) A_j dt$$
 Input of 713/715 TDJ

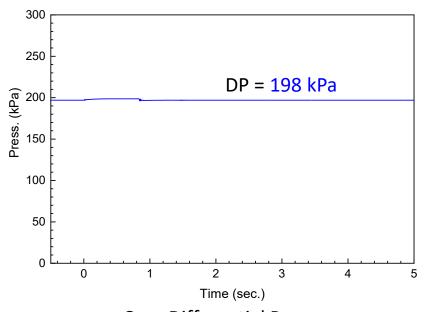

Drop Distance


$$l(t) = \int_0^t v(t)dt$$

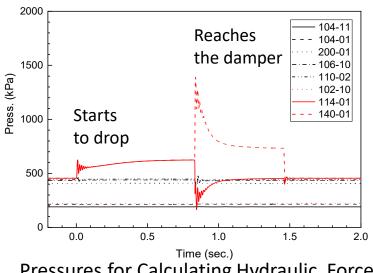
 Modeling of **Hydraulic Damping** ✓ Varying the flow area of 141 node

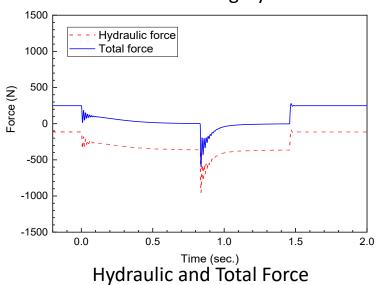
	1.0	_										\neg
в	0.9							_				
Are	0.8			HO	W	are	ea	ot	14	1 ٧	/S	
Non-dimensional Flow Area	0.7				Sti	rok	e (of (CP/	Δ		
аF	0.6				J.,			J	C1 /	•		
ion	0.5											
Jen	0.4											
μĖ	0.3											
Von	0.2											
_	0.1											
	0.0											<u> </u>
		0.0 N	0.1 on-d	_{0.2} imer	0.3 nsior	0.4 nal D	0.5 e pth	o.6 of D	0.7 amp	0.8 ing C	o.9 Cylino	1.0 der

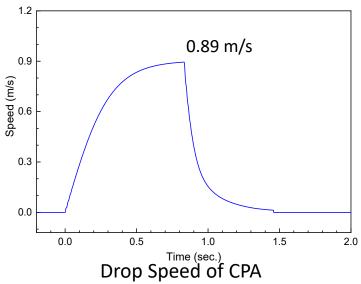

	Node No.
	104-11
Downward	104-01
Hydraulic	200-01
Force	106-10
	110-02
Upward	102-10
Hydraulic	114-01
Force	140-01

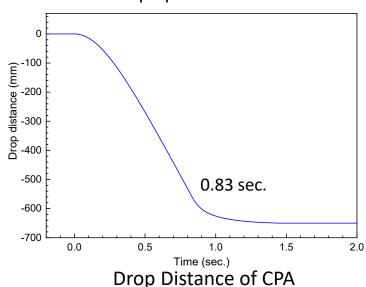


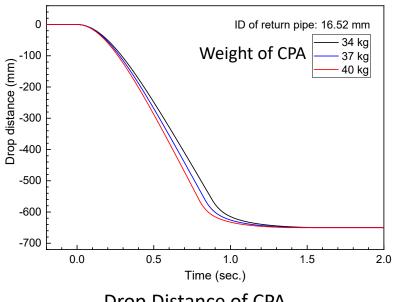
Normal Forced Flow Condition

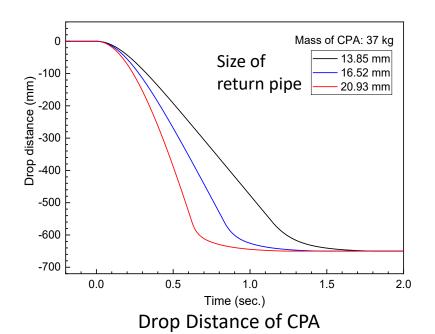

- Total flowrate = 113 kg/s, Core DP = 198 kPa
- Mass of CPA = 37 kg, Dia. of return pipe = 16.52 mm
- CPA starts to drop: 0.0 sec.
- Pump continues to run.


Flowrates at Test Section



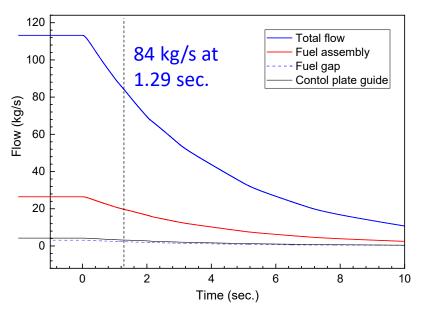

Normal Forced Flow Condition

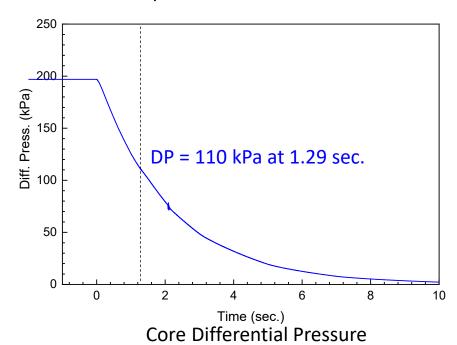

Pressures for Calculating Hydraulic Force



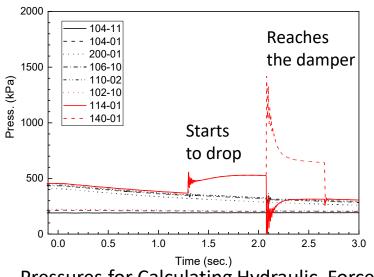
Normal Forced Flow Condition

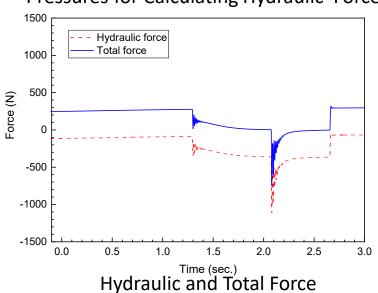
Drop Distance of CPA

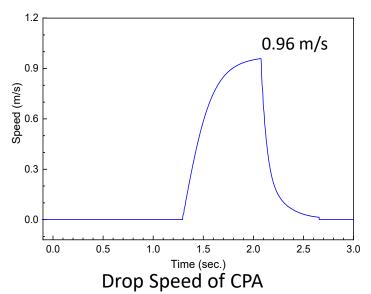

ID of return pipe	16.52 mm	Drop Time
	34 kg	0.88 sec.
Mass of CPA	37 kg	0.83 sec.
	40 kg	0.79 sec.

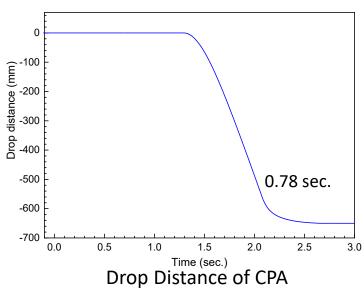

Mass of CPA **Drop Time** 37 kg 13.85 mm 1.14 sec. ID of return 16.52 mm 0.83 sec. pipe 20.93 mm 0.62 sec.

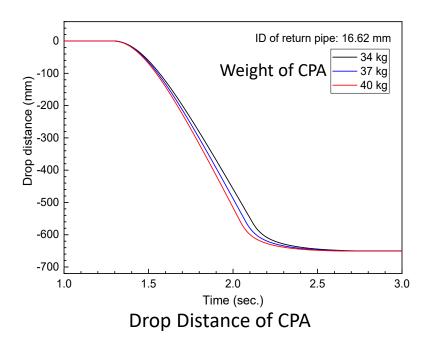
Pump Trip Event

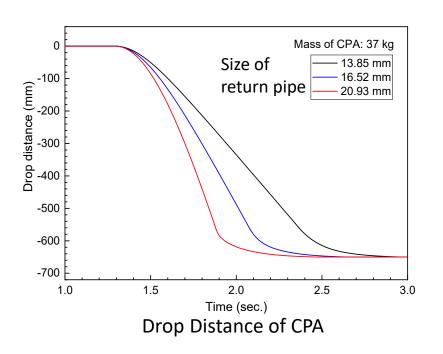

- Initial total flowrate = 113 kg/s, core DP = 198 kPa
- Mass of CPA = 37 kg, Dia. of return pipe = 16.52 mm
- Pump turned off: 0.0 sec.
- Flowrate reaches the low flow trip setpoint: 0.74 sec. (85% of normal flowrate)
- CPA starts to drop: 1.29 sec. (trip delay time of 0.55 sec.)


Flowrates at Test Section




Pump Trip Event


Pressures for Calculating Hydraulic Force



Pump Trip Event

ID of return pipe	16.52 mm	Drop Time
	34 kg	0.82 sec.
Mass of CPA	37 kg	0.78 sec.
	40 kg	0.75 sec.

Mass of CPA	37 kg	Drop Time
	13.85 mm	1.07 sec.
ID of return pipe	16.52 mm	0.78 sec.
pipe	20.93 mm	0.59 sec.

Effects of hydraulic load on the drop time

		Forced Flow Cases	Pump Trip Cases
ID of return pipe	16.52 mm	113 kg/s, 198 kPa	84 kg/s, 110 kPa
Mass of CPA	34 kg	0.88 sec.	0.82 sec.
	37 kg	0.83 sec.	0.78 sec.
	40 kg	0.79 sec.	0.75 sec.

		Forced Flow Cases	Pump Trip Cases
Mass of CPA	37 kg	113 kg/s, 198 kPa	84 kg/s, 110 kPa
ID of return pipe	13.85 mm	1.14 sec.	1.07 sec.
	16.52 mm	0.83 sec.	0.78 sec.
	20.93 mm	0.62 sec.	0.59 sec.

Conclusions

- A RELAP5 modeling on drop tests of the reactor shutdown system was developed in order to assess the effects of design variables on the drop time of CPA.
- The weight of CPA and the size of return pipe were investigated in the normal forced flow condition and the pump trip event.
- The trend of drop speed and distance of CPA is predicted reasonably.
- The drop time decreases obviously as the weight of CPA and the size of return pipe increase.
- The drop times of CPA in the pump trip cases are slightly shorter than in the forced flow cases due to the lower core differential pressure.
- The RELAP5 modeling will be verified experimentally and improved in the future.

Thank for your attention

