

MARVEL Microreactor Overview and Fuel System

June 20, 2023

Adrian R. Wagner

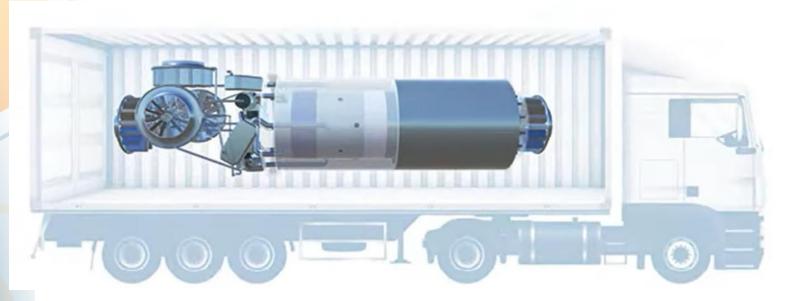
MARVEL Fuel Fabrication SME
Ceramic Fuel Fabrication and Advanced Manufacturing
Fuel Fabrication and Nuclear Material Management Division
Idaho National Laboratory

Jordan A. Evans, Ph.D.

Nuclear Materials Scientist
Department of Irradiated Fuels and Materials
Idaho National Laboratory

Travis L. Lange, Ph.D.

Nuclear Engineer Advanced Reactor Technology & Design Idaho National Laboratory


Overview

- Program Background
- Fuel System
- Material Interactions
- Summary

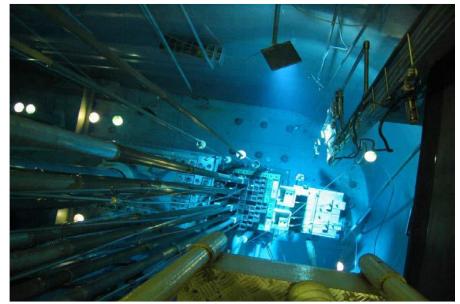
Nuclear Powered Microreactors in 5 Years

Transportable (Before *And* After Service)

Self-Regulating

Microreactor Application Research, Validation and EvaLuation

- Rapid prototype microreactor, ~ 100 kW_{th}
- Integrate with intermittent power sources (solar and wind) to form a "first of its kind" nuclear coupled microgrid
- Share lessons learned with commercial developers
- Within 5 years
 - Design
 - Licensing
 - Construction (at INL)
 - Testing
 - Operation


Critical Characteristics	
Reactor Thermal power	~100 kW
Nominal Electrical Output	~20 kWe
High-grade heat	~45 kWt at 450 °C
Coolant, natural circulation	Sodium-Potassium eutectic (NaK)
Fuel	U-ZrH
Reactivity Control	4 control drums (B ₄ C)
Location	INL, TREAT Facility

Background – MARVEL Fuel Selection

- The **304 SS-clad U-ZrH fuel system** has been selected for MARVEL (aka TRIGA reactor fuel)
- Fuel will be fabricated and purchased from TRIGA International
 - Same materials, same fabrication processes, etc.
- US NRC has licensed TRIGA reactors since the 1950s with this fuel system
- U-ZrH used previously in NASA space reactors (SNAP* program)

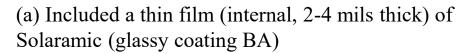
[1] History, Development and Future of TRIGA Research Reactors, International Atomic Energy Agency, Vienna, 2016.

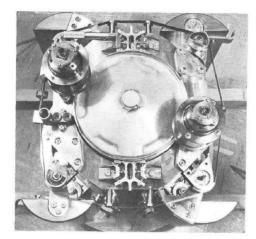
^{*}System for Nuclear Auxiliary Power

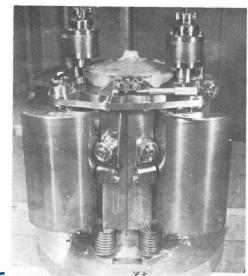
Background – The MARVEL Fuel Element

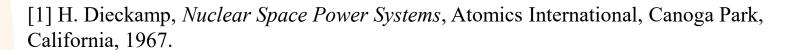
- Fuel meat contains fissile (²³⁵U) and neutron-moderating (¹H) species
- Excellent chemical stability in TRIGA reactor coolant (we'll discuss NaK in a moment)
- High fission product retentivity and high-temperature stability
- Fuel meat and cladding retain integrity under large reactivity insertions and frequent power cycling
- From NUREG-1282, fuel safety limit defined by gas over pressurization inside the element [1]

NRC Guidelines: NUREG-1537

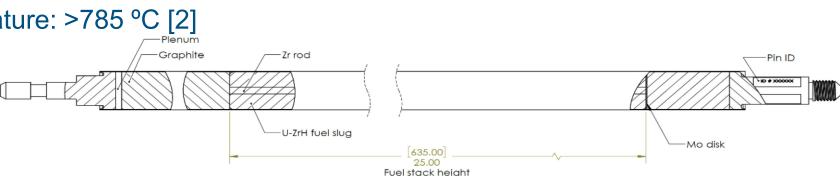

- MARVEL fuel authorization strategy follows US NRC regulatory guidelines:
- Completed by MARVEL Program (see INL/RPT-22-68555 MARVEL Reactor Fuel Performance Report [2])
 - Describe history of fuel type (previous tests, qualifications, etc.)
 - Describe geometries, composition, thermophysical properties, etc.
 - Describe irradiation performance relationships
 - Determine operational limits
 - Assess risk of reaching limits
 - Information and analyses "should be current"




Background – Space Nuclear Auxiliary Power (SNAP) Program


- NASA's SNAP
 program developed
 nuclear reactors and
 RTGs for space
 missions in the
 1950s and 1960s
- Post-irradiation examination following the SNAP-10A "extended BDBA test" (conditions held for 10,000 hours) showed no evidence of incipient failure

	MARVEL	SNAP-10A
Fuel Type	U-ZrH	U-ZrH
wt% U	30	10
Enrichment (%)	19.75	93
Gas gap	Air (1 atm)	He (0.1 atm)
Cladding	Type 304 SS	Hastelloy-N ^a
# Fuel Elements	36	37
Coolant	NaK	NaK
Fuel Temp (°C)	565	585
Power (kW _{th})	wer (kW _{th}) 85	
Control	Control BeO + poison (B_4C)	

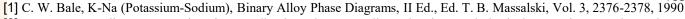


MARVEL Fuel System Overview

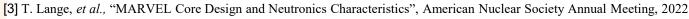
- 36 Elements each composed of:
 - 5 U-ZrH fuel meats clad in Type 304 SS
 - Annular with Zr rod
 - 30 wt% U, 19.75 % enriched
 - H/Zr: nominally 1.6
 - 2 graphite axial neutron reflectors
 - Peak cladding temperature: ~550 °C
- Primary coolant: Sodium-Potassium (NaK) eutectic
 - 21 wt% Na, 79 wt% K [1]
 - Eutectic temperature: -13 °C [2]
 - Boiling temperature: >785 °C [2]

Reactor vessel

(light blue)


Central void -

for control rod


(red)

NaK coolant

(light gray)

^[2] O. J. Foust, "Sodium-NaK Engineering Handbook: Volume I, Sodium Chemistry and Physical Properties", Gordon and Breach, 1972

MARVEL Core schematic

Progran

[3]

UZrH fuel (blue)

Zirconium

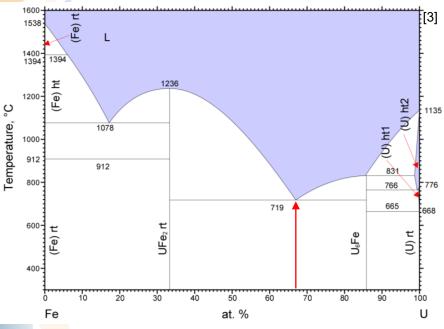
filler rod

(yellow)

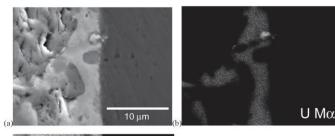
Metallic

beryllium (light pink)

A Few Fuel Performance Phenomena to Consider


- Hydrogen redistribution and dissociation (fuel)
- Internal gas pressure
 - From as-fabricated air in gas gap, fission gas, hydrogen
- Oxygen interactions (with fission products, with graphite, coolant impurity)
- Geometric changes (Zr rod, fuel meat, cladding, and graphite reflectors)
 - Thermal expansion, fission/void growth, crystallographic changes of fuel as a result of H₂ redistribution, swelling, radiation-enhanced creep
- Radiation effects
 - Hardening, embrittlement, etc.
- Fuel-cladding mechanical interactions (FCMI)
- Fuel-cladding chemical interactions (FCCI)
- Coolant-cladding interaction
- Hydrogen embrittlement (cladding)

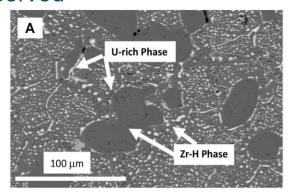
Fuel-Cladding interaction: As-fabricated and irradiated

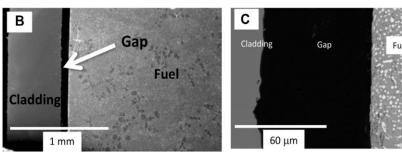

- At 730 and 800 °C, for as-fabricated TRIGA fuel (U-ZrH, Type 304 SS) [1]
 - Of primary concern: Fe-U eutectic (719 °C)
 - No evidence of eutectic formation after a 1-hour

soak

Fe-U eutectic

- 719 °C
- ~90 wt% U, 10 wt% Fe





U-ZrH / SS 304 diffusion couple 800 °C, 1 hour [1]

- As-irradiated TRIGA Fuel Analysis (20% burnup) [2]
 - No evidence of FCCI or FCMI was observed

As-irradiated 30/20 TRIGA fuel [2]

MARVEL Fuel Meat and Cladding Compatibility with Hot NaK Coolant

- Fuel Meat / NaK
 - No physical or microstructural changes of U-ZrH fuel were observed in NaK up to ~540 °C [1]
- Cladding / NaK
 - At temperatures above the peak cladding temperature for MARVEL

• Intergranular corrosion, pitting corrosion, and general content of the correct 12, 21

observed [2, 3]

Time [h]	Temperature 650 °C		Temperature 760 °C		
	Attack depth [µm]	Observation	Attack depth [µm]	Observation	
1500	0	No observable attack	0	Slight evidence of decarburization	
2500	35.5	Intergranular	35.6	pitting corrosion	
3500		General corrosion	33	intergranular corrosion	
4500	338.1	Pitting	58.4	decarburization	

Corrosion of Type 304 SS in liquid NaK-78, O₂content: <20ppm

Steady state

corrosion

dissolution

Corrosion rates of Type 304 SS in high-velocity sodium at 760 °C

³⁰⁴ S S (TI)
~12 ppm O IN No

304 S S
~12 ppm O IN No

304 S S
~4 ppm O IN No

10 2 4 6 8 IO 12 I4 I6 I8 20 (HUNDREDS
OF HOURS)

^[1] J. Vetrano, Delta-Phase Zirconium Hydride as a Solid Moderator, BMI-1243, Battelle Memorial Institute, Columbus, Ohio, 1957.

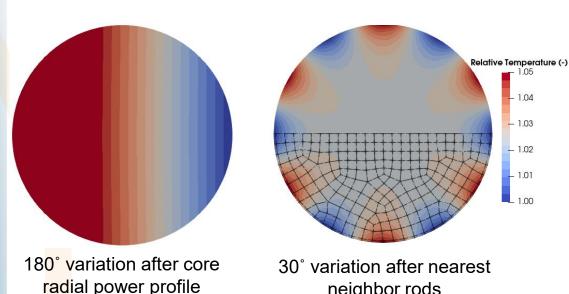
^[2] C. A. Zimmerman, "Corrosion of Type 316 Stainless Steel in NaK Service – A Literature Survey", IDO-146651.

^[3] M. A. Perlow, "SNAP-2 Primary Coolant Development", NAA-SR-6439, North American Aviation, 1961.

^[4] Weeks, J.R. and H.S. Isaacs, Corrosion and Deposition of Steels and Nickel-Base Alloys in Liquid Sodium, in Advances in Corrosion Science and Technology, M.G. Fontana and R.W. Staehle, Editors. 1973, Springer US: Boston, MA. p. 1-66.

Ongoing analyses include 3-dimensional, timedependent conditions

In order to show how the fuel rod pitch will change with extreme temperature/irradiation (flux/fission rate) gradients, a representative 3D model is used.


Azimuthally- and axially-varying temperature/irradiation capability

Hydrogen redistribution in the fuel (i.e. evolution of the H/Zr ratio) may alter fuel behavior

Constitutive properties (including H/Zr dependance) are used.

Hydrogen diffusion model is currently being investigated

neighbor rods

Resulting composite temperature variation

180°-symmetric TRIGA fuel element model

SS304 Cladding

Zirconium Rod

U-ZrH Fuel Pellet

Graphite Pellets

Summary

- The MARVEL Reactor has design based on TRIGA reactors and the SNAP experiments
- MARVEL fuel authorization strategy follows NUREG-1537 guidance
- MARVEL reactor fuel performance is bounded by already-existing fuel licenses
 - Maintains structural integrity, geometric stability, and behavior is stable and predictable under bounding accident conditions
- MARVEL will be constructed and deployed at the Idaho National Laboratory
- MARVEL will be integrated into a "first of its kind" nuclear-coupled microgrid

