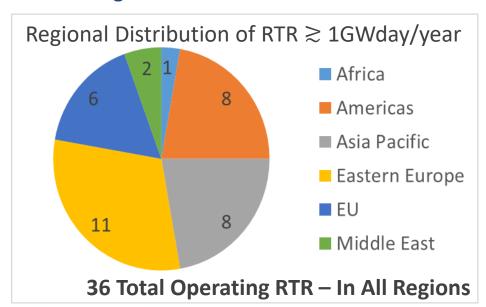


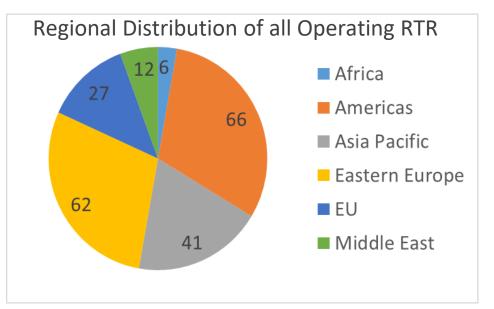
Trends and Progress in Research and Test Reactor Design and Deployment

Erik H. Wilson Research and Test Reactors Department Nuclear Science and Engineering Division Argonne National Laboratory

Outline

- Research and Test Reactors: U.S. and Worldwide
- Research Reactor Status/Performance
- RTR & HALEU Deployment

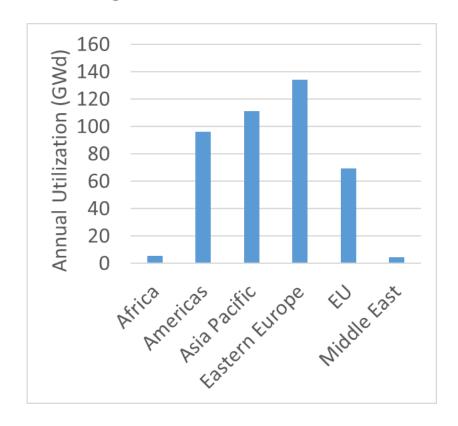

Research and Test Reactors: U.S. and Worldwide



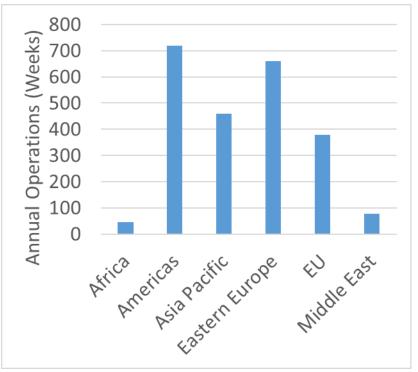
Distribution of HPRR Worldwide

Research and Test Reactors (RTR) – 214 total operating worldwide

 High Performance Research Reactors (HPRR) are distributed throughout the world

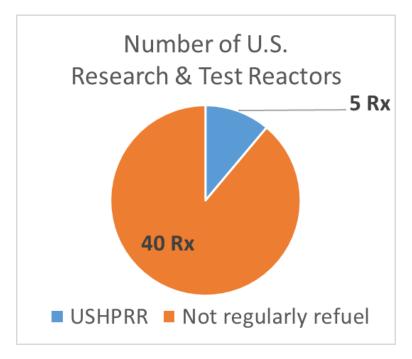


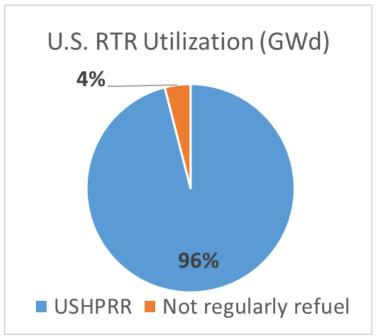
Data on slides from <u>IAEA RRDB</u> reported utilization; includes facilities/critical assemblies listed with power > 0; excludes subcritical facilities & permanent shutdowns


Utilization of all RTR Worldwide

Together, many regions contribute to the substantial level of RTR operations

Regional Distribution of Utilization


Regional Distribution of Cumulative Annual Operating Time by Region



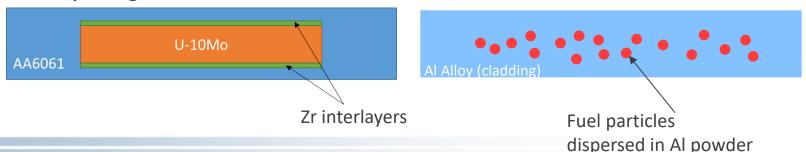
Distribution and Utilization of U.S. RTR & HPRR

Broad group of U.S. reactors contribute to the diverse missions that RTR fulfill

High-performance reactors make major contribution to overall U.S. RTR level of utilization

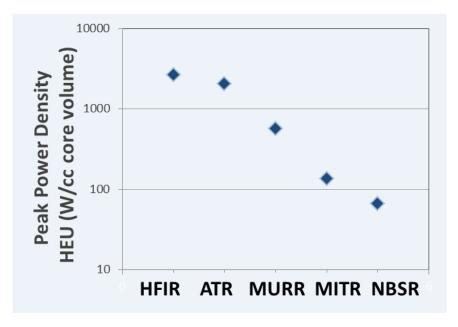
Research Reactor Status/Performance

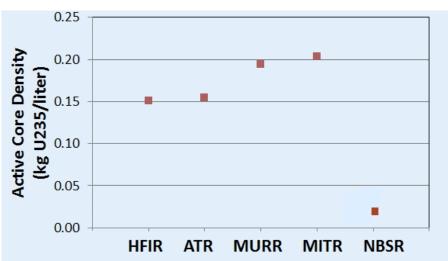
Research & Test Reactors Medical, Scientific & Engineering Missions


- RTR are ideal reactors for training and research
 - Often multipurpose facilities serving a broad range of users
- Some RTR can specialize in specific missions in areas of key importance to medicine, science and engineering
 - Innovative nuclear energy research on nuclear materials (new fuels and cladding...)
 - Neutron scattering is specially able to image materials, molecules and biological cells including for the development of pharmaceuticals
 - Crucial source of many radioisotopes used for nuclear medicine and industry
 - These and many other radioisotopes are produced mainly from a small number of high-performance research and test reactors worldwide that provide many life-saving procedures and serve other critical needs for society

Isotope	Critical Uses
NTD Si P-31	High power electronics (e.g. hybrid-electric vehicles)
Ni-63	Explosives detection
Y-90	Treats liver cancer
Mo-99	> 40 M medical diagnostics/year worldwide
I-131	Treats thyroid cancer
Sm-153	Treats bone cancer pain
Lu-177	Treats stomach & other cancers
W-188	Diagnose and treat cancers
Pu-238	Powers space exploration
Ir-192	Treats prostate & breast cancers, industrial gauges
Bk-249	Heavy isotope discovery
Cf-252	Reactor start-up sources

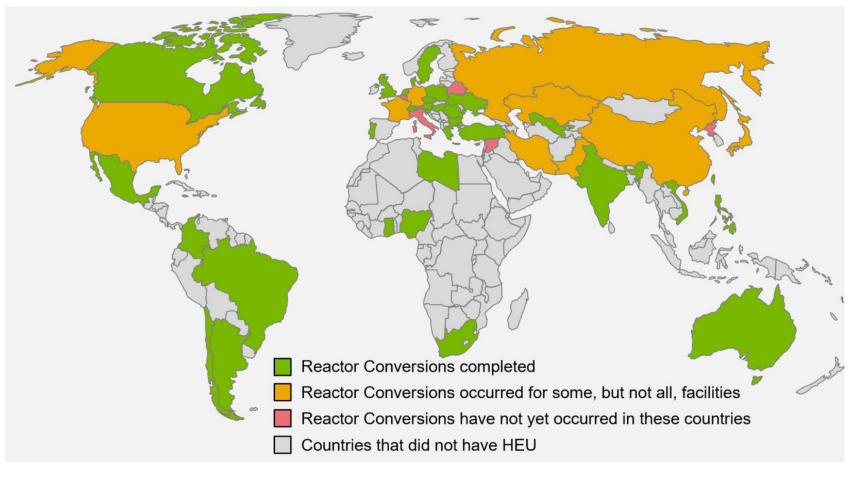
Progress and Efforts for High-Density HALEU Fuels


- 'Atoms for peace' in 1953 by U.S. President Dwight Eisenhower
 - Initiated research and test reactor fuel development at 20% enrichment
- Alvin Weinberg of ORNL at the 1st United Nations Conference on Peaceful Uses of Atomic Energy
 - Geneva 'swimming pool' reactor exhibited as the first international MTR-type
 - "sample UO_2 -aluminum 20 per cent enriched fuel elements of the type which will be available ...have now been tested... No failures have been encountered to ...10 per cent burn-up." (1955)
 - Origen of high-density dispersion fuels: overcame fabrication challenges to allow LEU export
- Dispersion fuels replaced solid metallic fuel in new high-power MTR-type plate reactors built in the 1960's onward
 - UO₂-Al, U₃O₈-Al, UAl_x-Al (aluminide)... with densities up to ~ 1 gU-235/cm³
- High-density HALEU fuel have been developed and deployed since ~1990
 - UZrH 30/20 alloy (TRIGA®), U₃Si –Al (rod), U₃Si₂-Al, U-7Mo dispersion and U-10Mo monolithic
 - Fuel densities up to 3 gU-235/cm³



HALEU Designs: Trends and U.S. High Performance Reactor Example

- Use of HALEU facilitated by high density fuels developed, often for LEU conversions
- Engineering approaches to HALEU RTR include managing active core fuel and power densities
 - Plate/rod design of fuel / cladding
 - Pitch
 - Symmetry
- Most fuel element designs AND core fuel management require engineering features designed to manage power peaking and advanced modeling (full core 3-D) shuffling



RTR & HALEU Deployment

High-Assay LEU Deployment in RTR through Conversions

- Successes have been enabled by the RTR community's engineering efforts to:
 - develop and LEU qualify fuel
 - design and fabricate fuel elements
 - model fuel cycles and reactor operations/safety
- Collaborative efforts have led to continued work on Reduced Enrichment For Research and Test Reactors (RERTR)
- Allows return of HEU to the country of origin as a major accomplishment in nonproliferation
- Worldwide over 70 reactors have converted to LEU fuel

HEU reduced (or eliminated) in over 40 countries and on 6 continents
Includes IVG.1M reactor conversion in Kazakhstan in 2022

High-Assay LEU Deployment in Future RTR

- Additional Infrastructure development needed for advanced reactors will also be useful to supply HALEU to future RTR
 - HALEU enrichment and associated front-end fuel cycle capabilities are needed to meet advanced reactor needs and research reactor/medical isotope production needs
- Design efforts to understand requirements for future, high-performance RTR are complementary to these efforts
- Demand timing, and commercial contracts for supply, will remain to HALEU <20% enriched for both Advanced Reactors and to allow RTR to continue to perform essential missions for society
- Front-end HALEU supply and RTR fuel element fabrication remains important for commercialization in the U.S. and around the world

Thank you for your attention.

Questions?

