

UPGRADE OF AN OVERHEAD CRANE IN THE CABRI NUCLEAR RESEARCH REACTOR

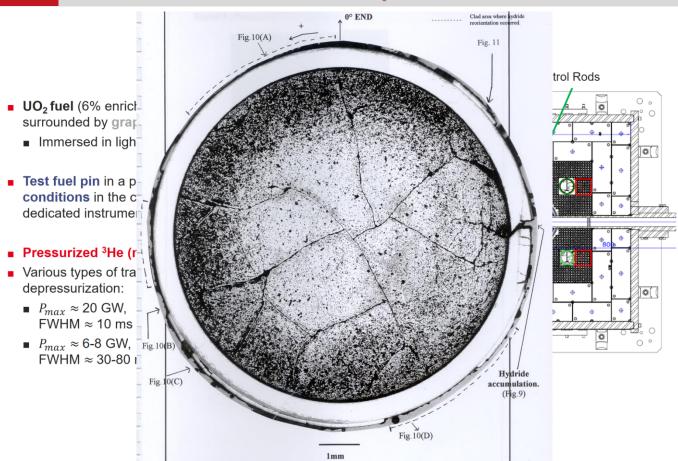
FROM RESEARCH TO INDUSTRY

2023 TRTR-IGORR Conference

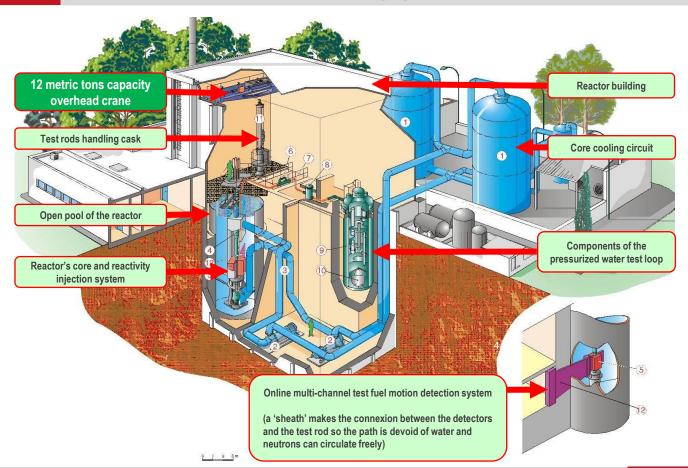
D. BONVALET

June 2023

IRESNE | Research Institute for Nuclear Systems for Low Carbon Energy Production



Upgrade of an overhead crane in the CABRI nuclear research reactor The CABRI Research Reactor



Upgrade of an overhead crane in the CABRI nuclear research reactor The CABRI Research Reactor and experiments

Upgrade of an overhead crane in the CABRI nuclear research reactor The CABRI Research Reactor and equipments

Upgrade of an overhead crane in the CABRI nuclear research reactor The CABRI Research Reactor's main overhead crane

CABRI's overhead crane before the 2022 upgrade

- The trolley travels on the bridge made of two beams (10 m), itself travelling on two rails that are part of the wall and span the whole 20 m of the reactor's building main hall.
- The lifting mechanism has a 12 metric tons capacity, along with the primary brake.
- The emergency brake installed during the previous upgrade, with a 10 metric tons capacity only because of technical limits regarding sizing.

Upgrade of an overhead crane in the CABRI nuclear research reactor Crane and Reactor's history

Historical

Mid 1962 : Start of construction

December 1963: Authorisation to start

February 1964: First divergence

June 1964 : Authorisation to operate

1964 to 2004 : Different experiment programs with a sodium loop

2005 to 2017: Adaptation (pressurized water loop) & renovation (seismic reinforcement, replacement of the core block, ventilation renovation)

2018 to 2025 (estimated): Experimental program CIP (Cabri International Program), RIA (Reactivity Insertion Accident) in a pressurize water loop

1963: Original bridge crane (6 tons)

1976: 1st upgrade (bridge modification and trolley change) to increase the capacity to 12 tons

2003: Addition of an emergency brake (10 tons)

2013: Various reinforcements and extensive nondestructive testings (safety reappraisal)

Upgrade of an overhead crane in the CABRI nuclear research reactor The Failure Mode Effects and Criticality Analysis (FMECA)

- Define the system
- Construct system block diagrams

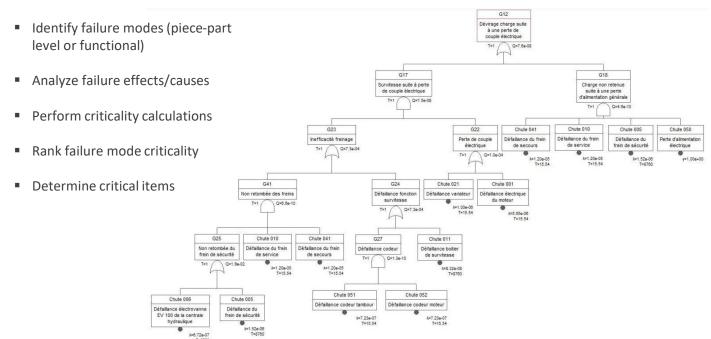
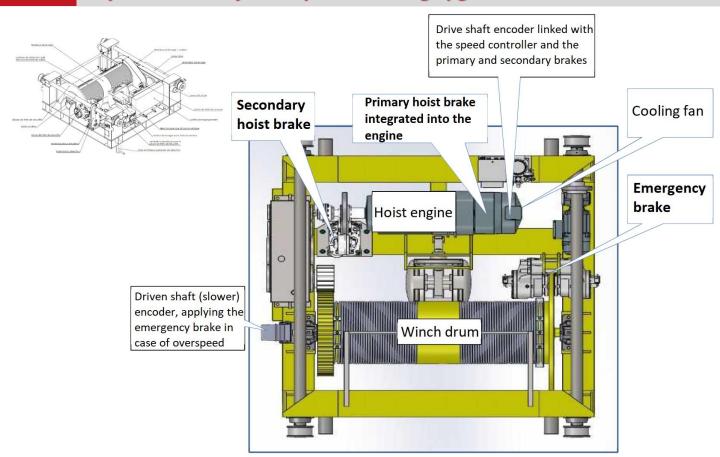
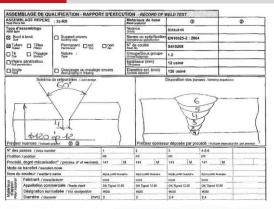



Figure 16. Porte G12 : Chute de la charge suite perte de couple électrique phase levage

Upgrade of an overhead crane in the CABRI nuclear research reactor Layout of the major components being upgraded

Upgrade of an overhead crane in the CABRI nuclear research reactor **Studying the possibilities and making choices**

- Modifying the trolley
 - + Cheaper
 - + Shorter overall fabrication time
 - + Less uncertainty/overseeing regarding the material and dimensions
- Changing the trolley completely
 - + Better design possibilities
 - + Shorter duration of unavailable bridge crane
 - + No ageing concerns at short term


Quality concerns and choosing the company: REEL

- 75 years' experience in manufacture and implementation of lifting and handling in highly sensitive environments
- involved with the French nuclear sector in particular since its earliest days

Upgrade of an overhead crane in the CABRI nuclear research reactor The fabrication process

EXAMEN REALISE	PV QMOS N° 273244-2010-18706 - ANNEXE 5 - PAGE 1/1

Repère d'identification Méthode : Macrographie Réactif : Date d'exécution : 10/12/2015

RESULTATS

Résultat :

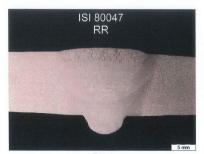


Figure: 1 Grossissement: 3.4 Localisation: Coupe transversale Aucune anomalie constatée

Upgrade of an overhead crane in the CABRI nuclear research reactor **Planning, preparing and managing the project on site**

Upgrade of an overhead crane in the CABRI nuclear research reactor Planning, preparing and managing the project on site

Upgrade of an overhead crane in the CABRI nuclear research reactor **Planning, preparing and managing the project on site**

Upgrade of an overhead crane in the CABRI nuclear research reactor **Feedback**

After one year of use:

- The new range of movements is identical to the previous one (criteria met)
- The new speeds and the option of proportional speeds gives the operators better control of the load
- No component failures have been reported
- The brakes hold perfectly well
- Half-yearly maintenance found no change in their tuning nor wear and tear

With the new FMECA and its conclusion of reliability this gives a sense of security to the operators. The precautions that existed before to deal with the risk of brake failure are still being followed: they have become standard for the facility and only serve to improve nuclear safety.

Upgrade of an overhead crane in the CABRI nuclear research reactor Use and perspectives in the reactor's life

This upgraded overhead crane has been used to perform two of the six experiments of the CABRI International Program in the past year, as well as several smaller scale experiments.

Built to last twenty years at the current intensive level of use before there will be any need to check on its structural integrity and potential obsolescence, we expect that it will perform its role flawlessly in carrying out the remaining part of the CIP as well as the new programs that will come after that, for which we are always glad to discuss possible need or

opportunities.

THANK YOU FOR YOUR ATTENTION

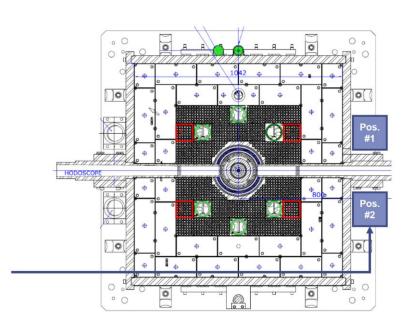
CONTACT: DAMIEN.BONVALET@CEA.FR

IRESNE | Research Institute for Nuclear Systems for Low Carbon Energy Production

Upgrade of an overhead crane in the CABRI nuclear research reactor **Onsite difficulties**

Upgrade of an overhead crane in the CABRI nuclear research reactor **Onsite difficulties**

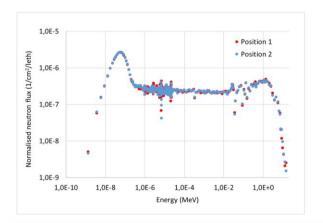
Upgrade of an overhead crane in the CABRI nuclear research reactor New external experimental positions


- More recently, creation of new irradiation positions in the CABRI reactor:
 - Without interference with transient tests
 - Easily accessible from above the core

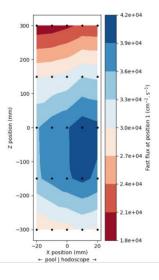
⇒ 2 positions located behind the graphite reflector

Available space:

800 mm x 200 mm x 200 mm

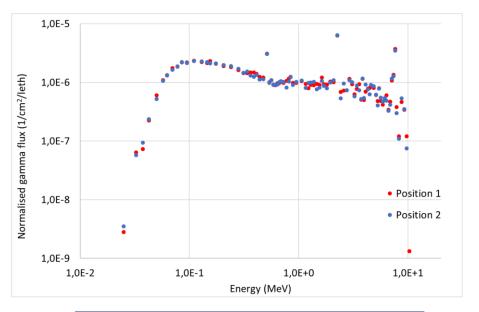

 Dedicated to material irradiation in mixed neutron-gamma field

Upgrade of an overhead crane in the CABRI nuclear research reactor Neutron characterization of external experimental positions


Neutron spectrum

If the core is operated at 100 kW (low power): Neutron Flux = $7.2 \cdot 10^{10}$ n/cm²/s

- Thermal flux measurements
 - Flat along x-axis
 - Cosine-shaped along z-axis, shifted toward the bottom due to partial control rods insertion
 - (imm) report | hodescope +


- Fast flux measurements
 - Maximum close to the hodoscope channel, due to neutrons streaming out of the channel

Upgrade of an overhead crane in the CABRI nuclear research reactor **Gamma characterization of external experimental positions**

Gamma spectrum

If the core is operated at 100 kW (low power): Gamma flux = $5.5 \cdot 10^{10}$ g/cm²/s