A nuclear research institute reshaping the future based on peoples trust

Consideration of a Two-phase Excitation Control Method for Stepping Motor Used in HANARO's Control Rods

Jiye Jeong (jiye8713@kaeri.re.kr)

A nuclear research institute reshaping the future based on peoples trust

- O1 Control Absorber Rods Drive System of HANARO
- O2 Analysis of the current excitation method
- 103 Two-phase excitation method
- 04 Conclusions

Korea Atomic Energy Research Institute

01

Introduction of HANARO

- High-flux Advanced Neutron Application Reactor
- 30MW (thermal)
- Safety Design
 - √ 318 tons of water tank
 - → Cooling & radiation shielding
 - ✓ Natural convection if power failures
 - ✓ Available to open
 - → Additional cooling water

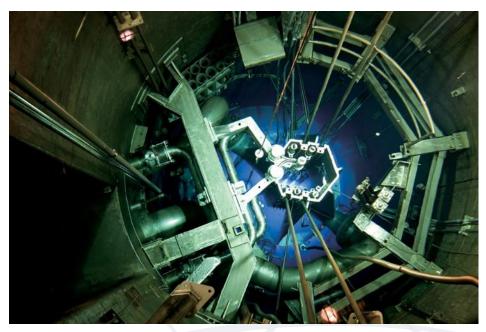


Figure 1. Reactor Pool of HANARO

- Introduction of HANARO
 - Four Shut Off Rods (SORs)
 - → Shut down reactor rapidly and safely
 - → Vertical fall by gravity
 - : inserting cylindrical hafnium tubes into the core
 - Four <u>Control Absorber Rods</u> (CARs)
 - → Regulate power output
 - → Move up or down

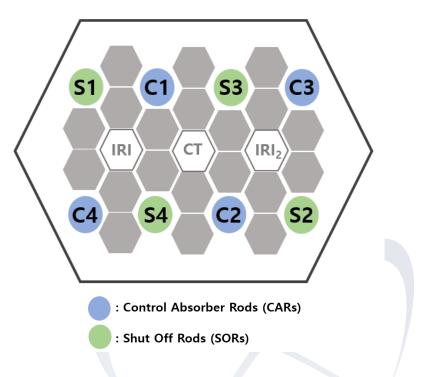


Figure 2. CARs and SORs in the core

Control Absorber Rods Drive System

Three parts: Absorber Element Assembly, CARs Drive Assembly,

Rod Control System(RCS)

1. Absorber Element Assembly

- ✓ Control the reactivity of the core directly
- ✓ Components : hafnium tubes, shrouds, tracks etc.

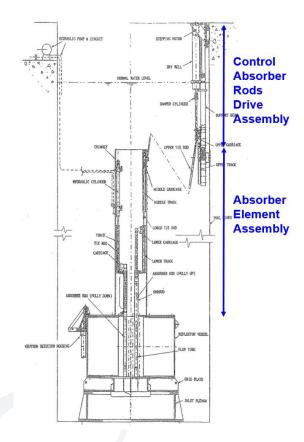


Figure 3. Configuration of CAR

Control Absorber Rods Drive System

2. CARs Drive Assembly

- ✓ Mechanical unit to control rods by receiving drive signals
- ✓ CARs are moved by rotational motion of stepping motor.
- ✓ Components : stepping motors, drive nut, electromagnet, lead screw etc.

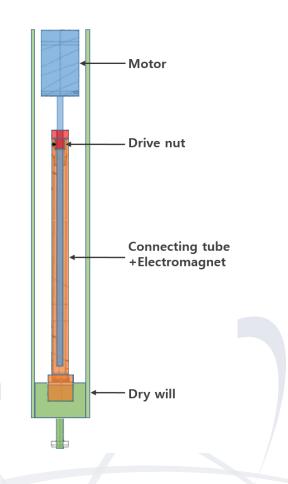


Figure 4. Configuration of CAR Drive Assembly

KAERI Korea Atomic Energy Research Institute

- Control Absorber Rods Drive System
 - 3. RCS(Rod Control System)
 - ✓ I&C System to generate and deliver the driving signal of CARs.
 - ✓ Four parts: controller, counter card, motor driver and encoder

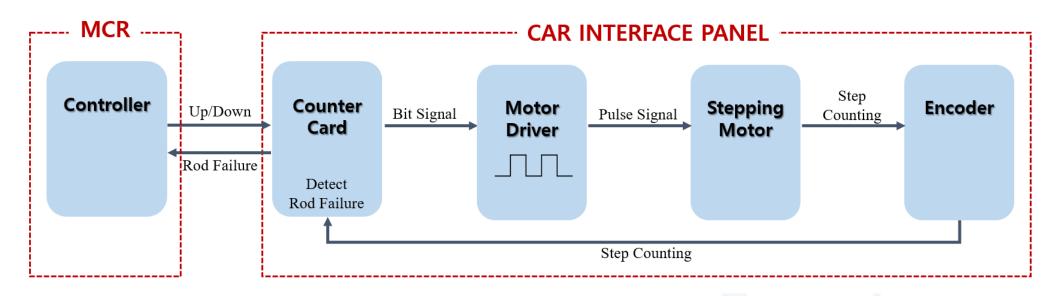
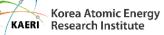



Figure 5. Driving Signal Flow

Control Absorber Rods Drive System

- 3. RCS(Rod Control System)
 - a. Controller
 - ✓ Generating the driving signals for CARs
 - ✓ Reporting failure of CARs

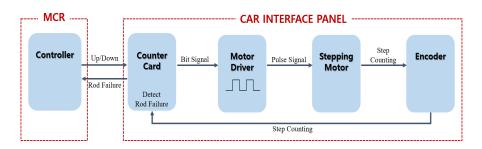


Figure 5. Driving Signal Flow

b. Counter card

- ✓ Converting the signals(the number of steps, direction) into bit signals
- ✓ Detecting failures such as step errors, time-out errors and power supply errors

KAERI Research Institute

- Control Absorber Rods Drive System
 - 3. RCS(Rod Control System)
 - c. Motor driver
 - ✓ Converting the bit signals to pulse signals

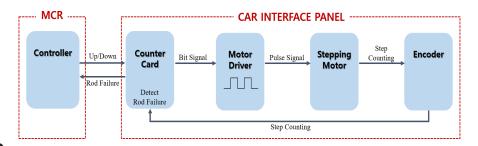


Figure 5. Driving Signal Flow

- d. Encoder
 - ✓ Checking and monitoring motor's movement (the number of steps)
 - ✓ The information of movement is compared with order steps.
 - ✓ Generating the error if there is a difference greater than 3 steps

Consideration of a Two-phase Excitation Control Method for Stepping Motor Used in HANARO's Control Rods

Analysis of the Current Excitation Method

Q2 Analysis of the Current Excitation Method

- One-phase Excitation Control System
 - Stepping motor: commonly used electromechanical device
 - One-phase excitation :
 - √ Requiring four steps per cycle
 - √ 1.8 degree movement per step

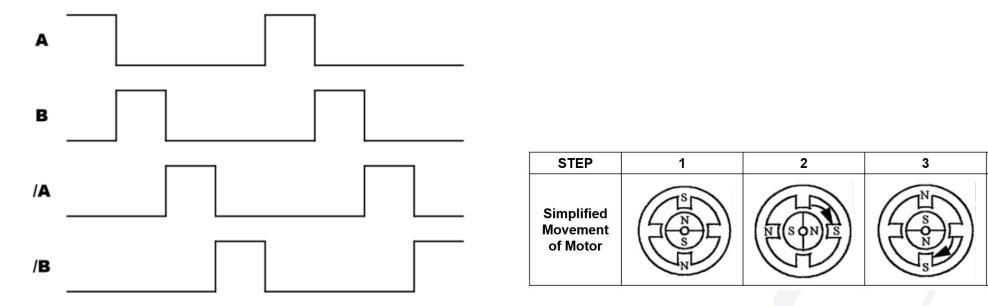


Figure 6. Sequencer of One-phase Excitation Control System

Q2 Analysis of the Current Excitation Method

- One-phase Excitation Control System
 - Lower power consumption
 - Easy to maintain and develop
 - Vibration and noise
 - Slip out of control rods from malfunction of stepping motor
 - → Gap between the intended position and actual position
 - → Abnormal alarm due to error
 - → Reactor shut down due to the alarm

- Two-phase Excitation Control System
 - Higher power consumption with an increased motor strength
 - Lower vibration and noise
 - Prevent the control rods from slipping out
 - More complicated system
 - → There are many consideration for implementing.

- 1) Upgrading the motor driver with the current stepping motor 2) Upgrading the motor driver with 8-lead stepping motor

Upgrading the Motor Driver

It is efficient to prevent control rods from slipping.

→ When one phase fails to move, the other phase can hold the control

rods in place.

Ex) B fails to be excited.

/A remains excited. → NO SLIP

• PLC¹⁾ & <u>CLPD</u>²⁾ normally used for motor control system.

More suitable for smaller-scale motor control systems with specific requirements.

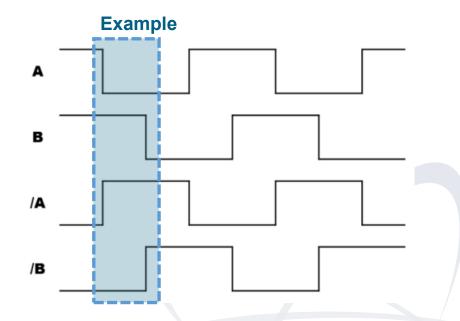


Figure 7. Sequencer of Two-phase Excitation Control System

- 1) PLC(Programmable Logic Controller): It offers flexibility and robust processing power.
- 2) CLPD(Complex Programmable Logic Device): It provides more fine-grained control over hardware design.

- Upgrading the Motor Driver
 - CLPD is generally composed of an excitation sequencer, a current regulator and a power module for motor driver (Figure 8).
 - Consideration
 - ✓ Add a diode or digital filter to maintain a constant torque and reduce irregular vibration
 - ✓ Utilizing current control to achieve smoother and more accurate
 - It depends on the specific control device being used. (types of CLPD or brand)

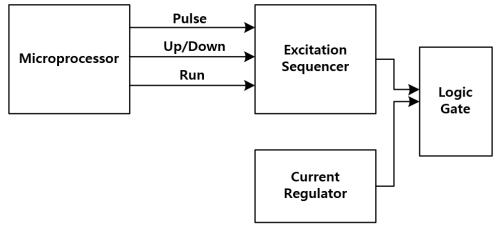


Figure 8. General Configuration of CLPD

- **☑** Upgrading the 8-lead Stepping Motor
 - 4-lead Motor: Possibility of malfunction
 - → (Figure 9) If the physical wire of A-phase and B-phase is disconnected.

→ [Operational Experience]

One of the phases was loosely connected

disconnected during operation of reactor.

internally. And it became completely

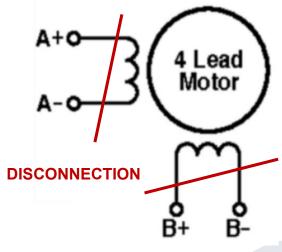


Figure 9. 4-lead Motor

Figure 10. Malfunction

- **☑** Upgrading the 8-lead Stepping Motor
 - Physical redundancy design is necessary.
 - → 8-lead motor (Figure 10)
 - → The CCF(Common Cause Failure) in the four internal motor wires is very low probability.
 - Consideration
 - → Higher current consumption
 - → More complexed control system

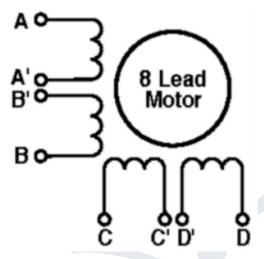


Figure 11. 8-lead Motor

Consideration of a Two-phase Excitation Control Method for Stepping Motor Used in HANARO's Control Rods

Conclusion

04

04Conclusion

- Current : One-phase excitation control system
 - HANARO has four control rods operated by one-phase excitation control system.
 - Whichever phase fails.
 - → It leads to slip of control rods.
 - → It leads to a deviation from the desired position.
 - → It leads to reactor shut down.

04Conclusion

- Necessary to upgrade of rod control system
 - Two-phase excitation control system by upgrading the motor driver.
 - → Several considerations such as constant torque or vibration
 - → The current stepping motor can be used continuously.
 - Two-phase excitation control system with 8-lead motor
 - → Physical redundancy design
 - → This design is to reduce the unavailability by considering the CCF.
 - → It costs more and takes longer, but is safer.

04Conclusion

Further study

- Search the motor driver(CLPD) that can control the current stepping motor.
- Design the two-phase excitation control system by considerations that researched.
- If required, the unavailability of the control rod system with the new motor driver will be compared to the unavailability of the control rod system with the 8-lead motor. → criterion for assessing the need for implementing this design.

