
Status of Decommissioning of Deuterium Critical Assembly (DCA)

Mai Watanabe, Shunsuke Akimoto, Mizuki Sato, Noriaki Ohtsuka, Masaki Hisada, Yasutaka Fukui

Shut down & Phase 2001 2003

Outline of DCA R&D for "Fugen", subcriticality measurement technology Deuterium water Moderator Shutdown in 2001 Approval of in 2006 decommissioning plan Maximum Output 1kw Cylindrical, Aluminum Core tank Diameter: 3m, Hight: 3.5m

- Removal of the fuel from the nuclear core tank
- Installation of sealing lid
- Dismantling and shutdown of equipment
- (1) Dismantling of safety and control rods
- (2) Removal and haul-out of start-up neutron sources
- (3) Shutdown of measurement and control system facilities *

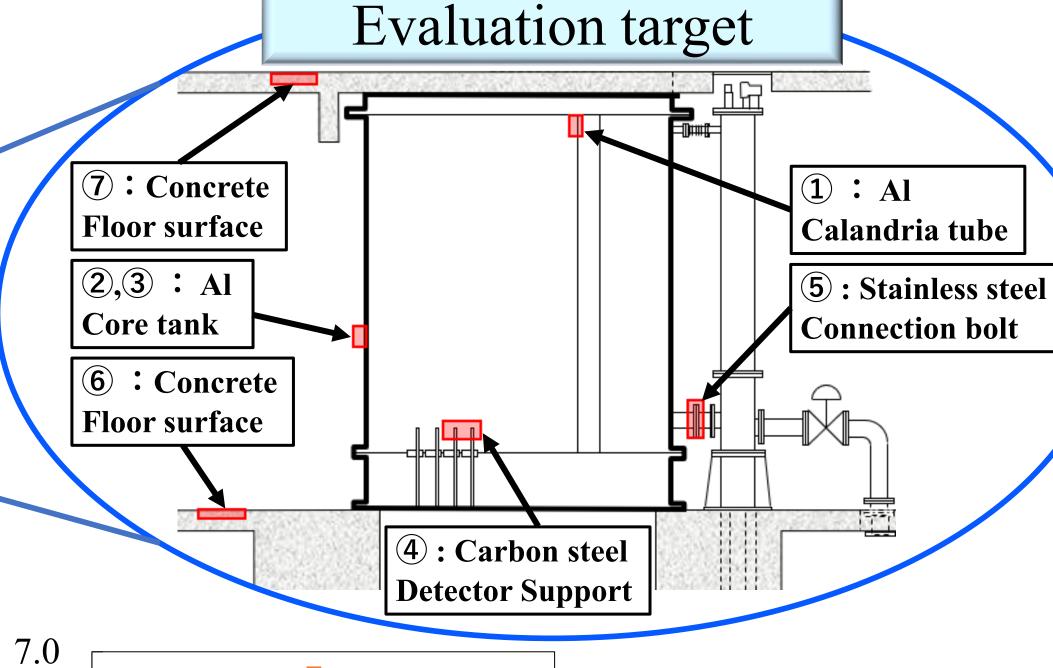
glove box Phase

1.6

1.0

0.6

(Bd/g)


2003

2008

H-3

%Not

Performed

■ Deuterium water transportation

Dismantling of equipment glove box

BEFORE

AFTER

Evaluate radioactivity concentration

Evaluations of radioactivity calculated values (ORIGEN) and measurement ones.

From the evaluation, the following prospects were obtained for efficient dismantling planning and safety management in the phase 3:

How to sort dismantled items

Stainless steel material Radioactive Carbon steal (Near the core) Sorting Aluminum Clearance Carbon steal (Away from the core)

- Reevaluation of depth relationship between concrete and H-3.
- Non-necessity of Radiation protection equipment because of Low radiation exposure from dismantled items.

Radioactivity 2.0 0.4 1.0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 *Because 2 and 3 were made of the same material as 1 ORIGEN Result

Dismantling of equipment

(1) Gas system

Co-60

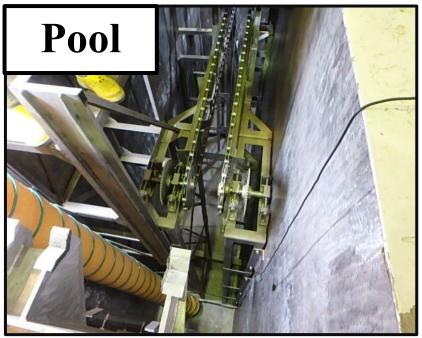
<u>ND</u>

6.0

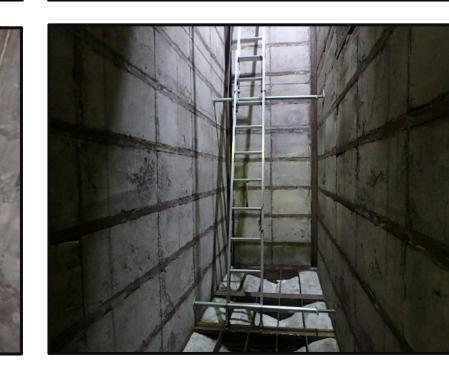
5.0

4.0

3.0


- (2) Deuterium water system
- (3) Materials around core tank(Core tank, Pool, etc.)

Optimal tools and radiation exposure management were selected for each situation and equipment.



BEFORE

DURING

AFTER

Evaluate the radioactivity concentrations (concrete)

By the optimal tools and management, dismantling work

was completed safety and efficiently.

H-3 (1st Floor) H-3 (2nd Floor) (BC concentration 0^{0} 10^{0} $\underline{\text{ND}}$ 10^{-1} 10^{-1} Radioactivity 10^{-2} ORIGENResult ORIGENResult 0^{-3} 10-3 50 100 150 200 250 50 200 100 150 250 Depth (mm) Depth (mm)

The evaluation values were all lower than the calculated values.

By conducting a more detailed evaluation, it will be possible to estimate the radioactivity classification of waste for each depth in the concrete.

Current Task

- Preparation of clearance inspection equipment
- Fuel transportation

Phase 4 5 years

Phase

2008

2034

Future Work for phase 4

- ☐ Clearance Verification
- ☐ Dismantling of the reactor building

After decommissioning ☐ Confirmation of completion decommissioning By NRA