Joint IGORR 22nd / IAEA Technical Meeting 15-19 June 2025, Mito, JAPAN

Neutron Transmutation Doping at JRTR to Strengthen Global Semiconductor Supply Chain for Net-Zero Emission Technologies

Majd Hawwari, Rashdan Malkawi, Sayel Marashdeh, Kafa Al-Khasawneh, Saed Almomani, Shojaa Aljasar, Ahmad Hawari, and

Mahmoud Suaifan*

Affiliation: JRTR / JAEC / JORDAN

16 June 2025

RR: Jordan Research and Training Reactor (JRTR)

Contents:

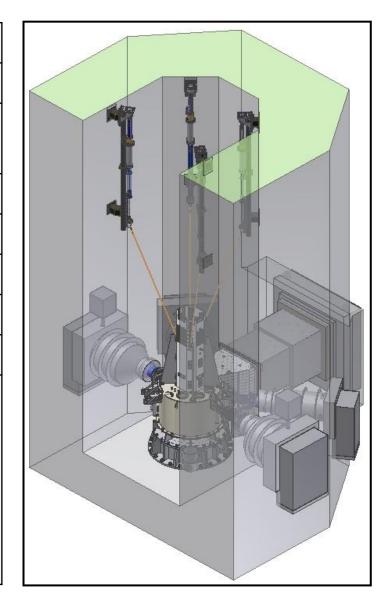
- 1. Semiconductor Market
- 2. Introduction about JRTR
- 3. NTD Facility at JRTR
 - 1) Design and Geometry
 - 2) Neutron Flux Characterization
 - 3) Doping Uniformity Control
 - 4) Irradiation Capacity of Si ingots at JRTR
- 4. Financial Considerations
- Summary of Progress & Conclusion

1. Semiconductor Market

(Silicon)

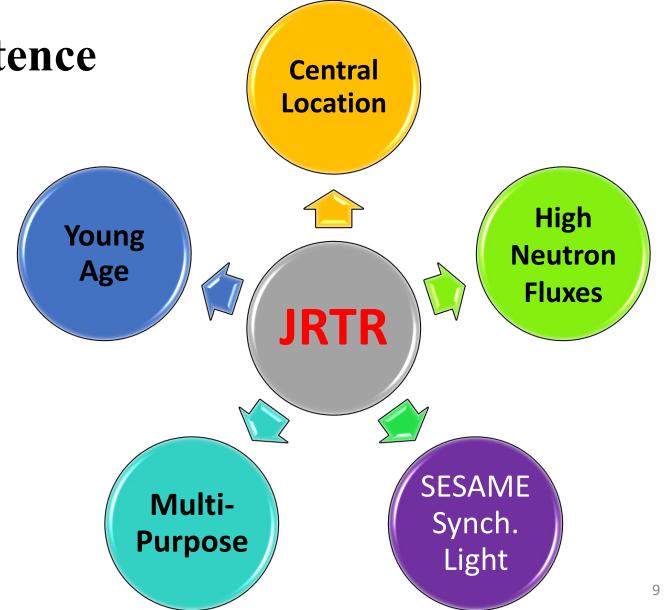
Item	Description / Status
	✓ Semiconductors (Si) are critical electronic components
Criticality	
Of	✓ Serve a vital role across numerous industrial sectors
Material	
	✓ Especially in emerging green energy technologies using high-quality, HV devices
	✓ Although Ge is used for various key products, NTD primarily focuses on Si
Why Silicon	✓ N-doped NTD-Si semiconductors are still widely used
	✓ Especially in high-performance, HV power devices

Item	Description / Status
	 ✓ According to the Historical Billings Report (2025) of the World Semiconductor Trade Statistics (WSTS) Organization, global semiconductor sales are projected to reach ~ \$697 billion (11.2% increase from 2024) (to grow by 8.5% in 2026 to \$760.7 billion)
Statistics	✓ Making semiconductors the world's fourth largest trade product
	(after crude oil, refined oil, and automobiles)
And	
	✓ Driven by the Logic and Memory sectors, EV, and HV-electronics
Trends	(expected to be broad-based , with continued expansion across all global regions)
	✓ COVID-19 chip shortages and trade tensions have exposed supply chain issues, pushing countries to seek more control over semiconductor production
	✓ Hence, strengthening the global semiconductor production system is thus essential


2. Introduction about JRTR

Characteristics of the JRTR

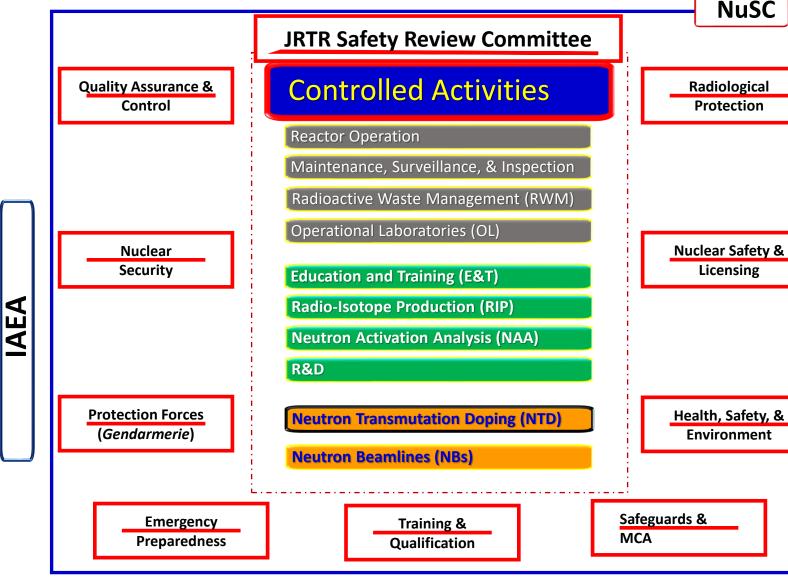
Rx. type:	Open-tank-in-pool (<mark>multi-purpose</mark>)		
Thermal power (MWth):	5 (upgradable to 10)		
Max. Th. neutron flux (n/cm²/s):	1.5 x 10 ¹⁴ → in the core (central trap) 4.0 x 10 ¹³ → in the reflector region (D ₂ O tank)		
Fuel type:	Plate type, 19.75 % enriched (U ₃ Si ₂ matrix)		
Fuel loading:	18 FAs, 7.0 kg of U-235, aluminum cladding		
Coolant/Moderator:	Light water (demineralized H2O)		
Cooling methods:	Natural/Forced convection flow		
Reflector:	Be assemblies + heavy water (D ₂ O)		
Utilization: (multi-purpose)	 ✓ Education & Training (E&T): (Training center + MCR Experiments) ✓ Neutron Irradiation Services (35 Vert.):		



Importance and Competence

of the JRTR

NuSC


Radiological

Protection

Licensing

JFDA

Conduct of Operations

EMRC

Stakeholders for Safety & QA

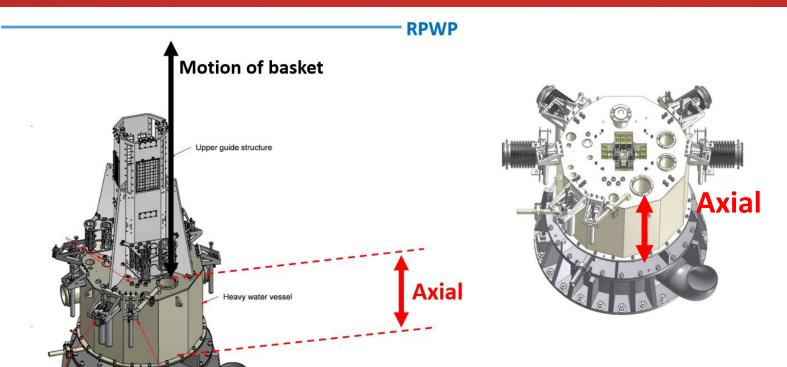
Binding Document

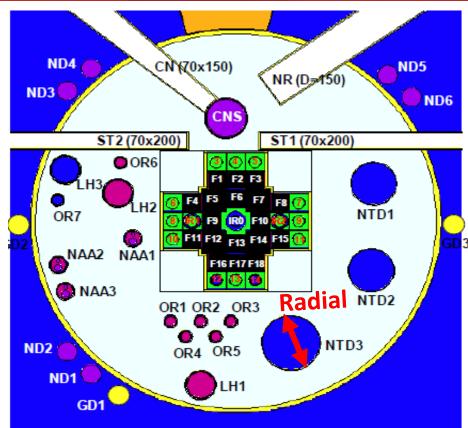
Essential Operations

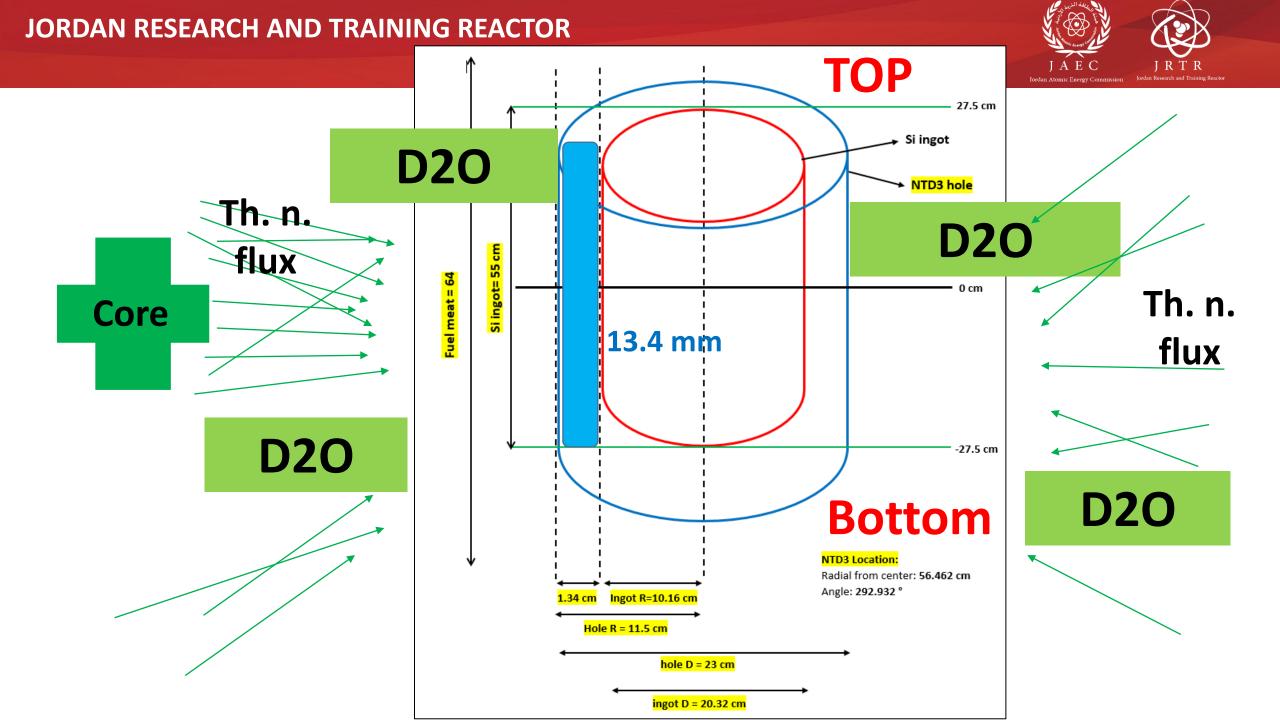
Active Utilization

Ongoing Utilization

3. NTD Facility at JRTR




3.1 Design and Geometry



Hole name & Diameter		Ing	got Dia.
NTD1	18 cm	6"	15.24 cm
NTD2	18 cm	6"	15.24 cm
NTD3	23 cm	8"	20.32 cm

3.2 Neutron Flux Characterization

Ref: FSAR, Rev.4

Country	RR name	Φ _{th} /Φ _f at NTD hole
Germany	FRM-II	1700 = 1.7×10 ¹³ /1.0×10 ¹⁰
Australia	OPAL	800 = 1.6×10 ¹³ /2.0×10 ¹⁰
Jordan	JRTR	> 180 = 6.9×10 ¹² /3.7×10 ¹⁰
Poland	MARIA	133 = 6.0×10 ¹² /4.5×10 ¹⁰
China	CARR	100 = 1.0×10 ¹⁴ /1.0×10 ¹²
China	HFTER	4.8 = 1.2×10 ¹⁴ /0.25×10 ¹⁵
Belgium	BR2 (SIDONIE)	27 = 5.5×10 ¹³ /0.2×10 ¹⁰
Check	LVR-15	12 = 2.7×10 ¹³ /2.2×10 ¹²
Belgium	BR2 (POSEIDON)	5.3 = 5.3×10 ¹² /1.0×10 ¹²
South Africa	SAFARI-1	1.6 = 1.5×10 ¹⁴ /9.3×10 ¹³
China	MJTR	0.54 = 4.5×10 ¹³ /1.9×10 ¹⁴
Brazil	IAE-R1.	2 000
Korea	HANARO	400

Table 5.5-5 Neutron Fluxes at Utilization Positions (Eq. Core, BOC)

Utilization Position		B4 - 4! - 1			
	Thermal Flux	(E<0.625 eV)	Fast Flux	E>1.0 MeV)	Material in the hole
	Maximum	Average	Maximum	Average	
NTD1	9.8E+12	8.3E+12	3.0E+10	2.3E+10	Water
NTD2	8.9E+12	7.4E+12	3.2E+10	2.2E+10	Water
NTD3	8.4E+12	7.0E+12	5.0E+10	3.8E+10	Water

Th./fast ratio

(Max./Max.):

NTD1 ~ 325

NTD2 ~ 280

NTD3 ~ 170

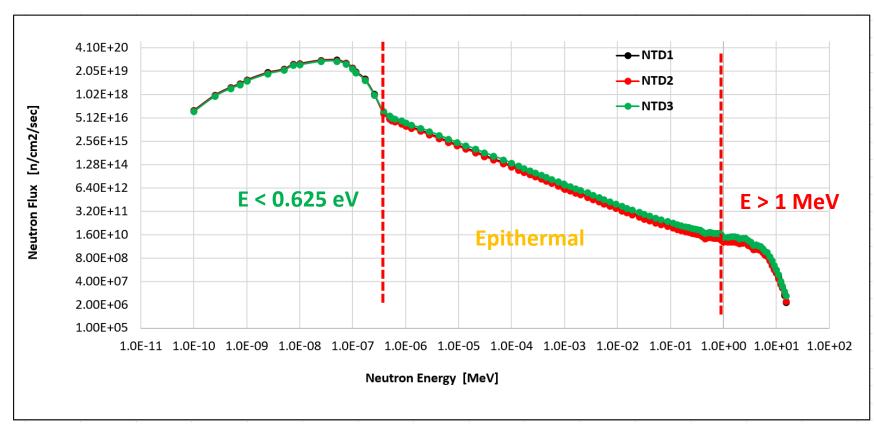
Th./fast ratio

(Avg./Avg.):

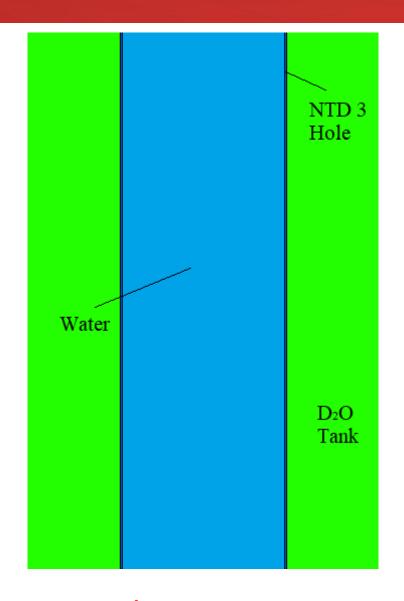
NTD1 ~ 360

NTD2 ~ 335

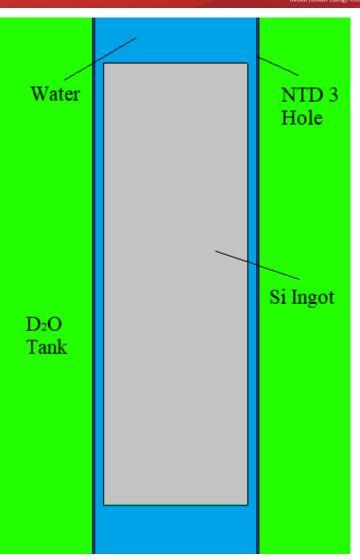
NTD3 ~ 185

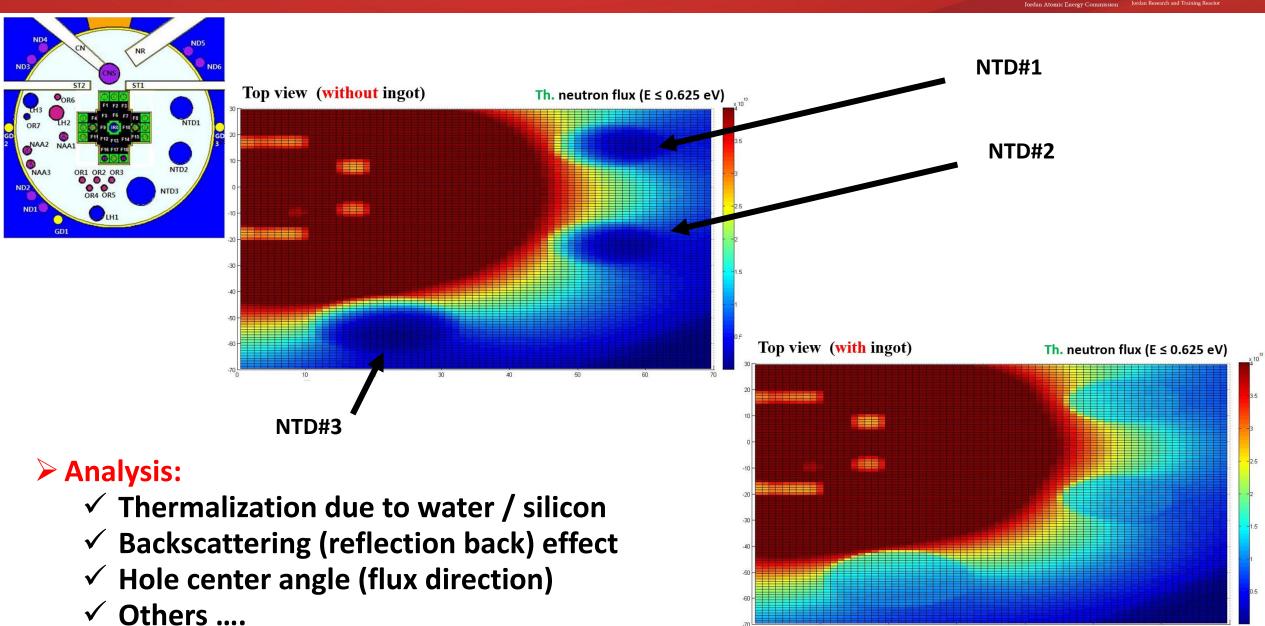


(McCARD)

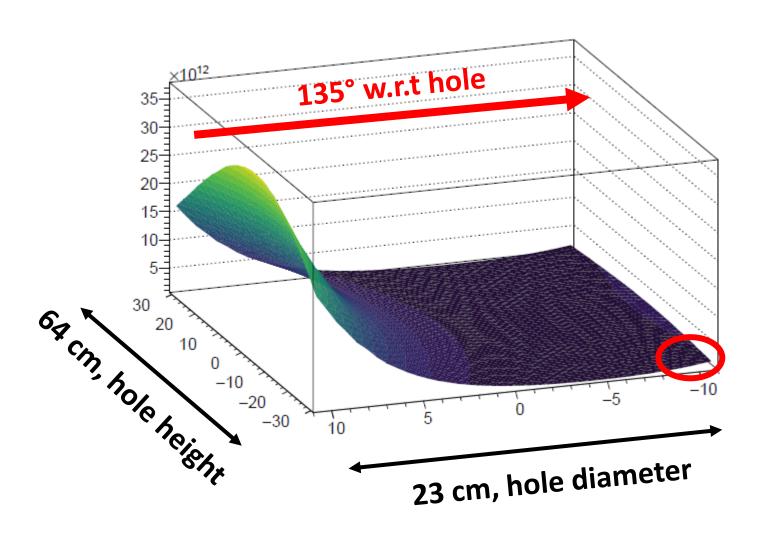

Th./fast ratio

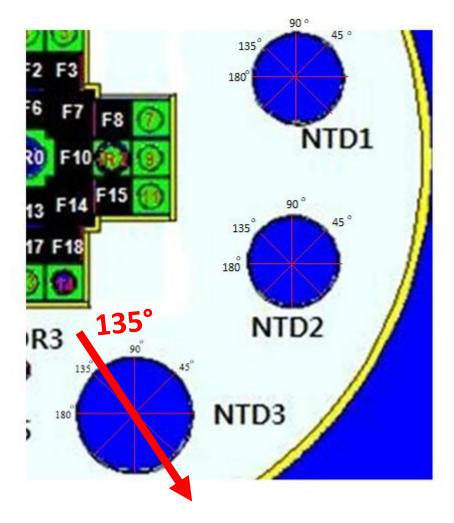
NTD1 ~ 360 NTD2 ~ 335 NTD3 ~ 185



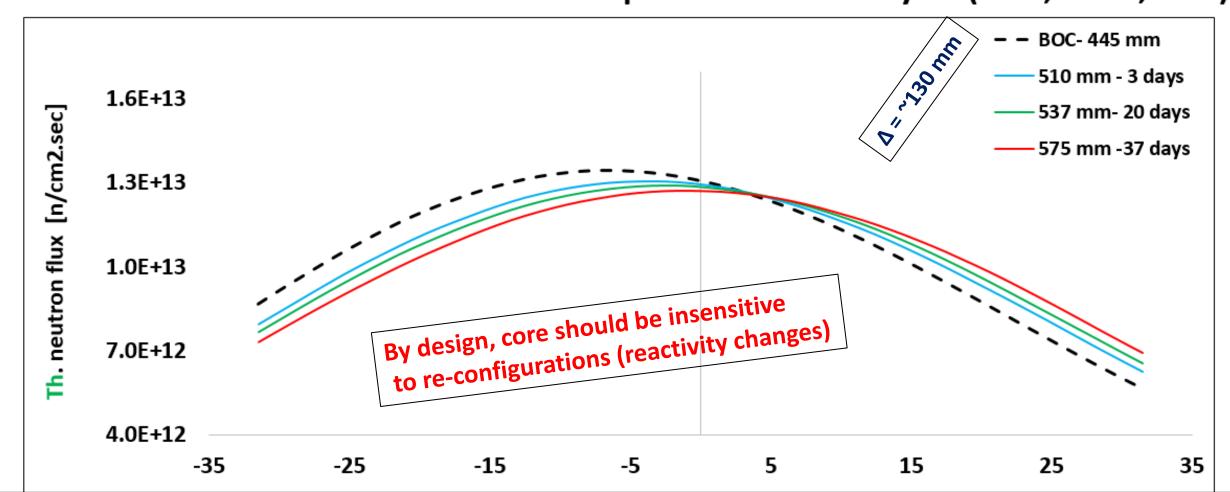

Without Si ingot

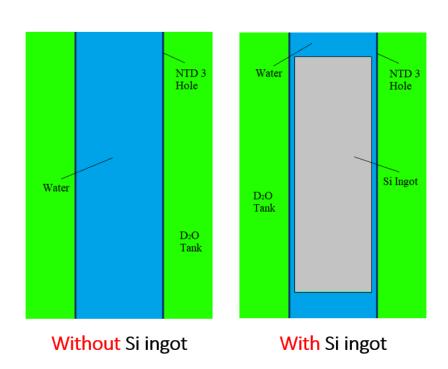
With Si ingot

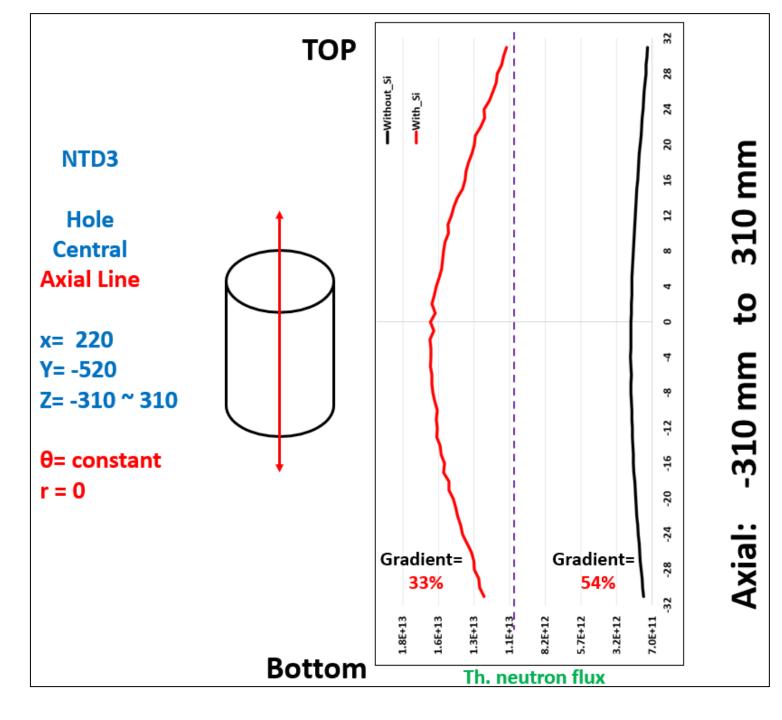




> Flux along the 135 line NTD3 McCARD using Point Detectors

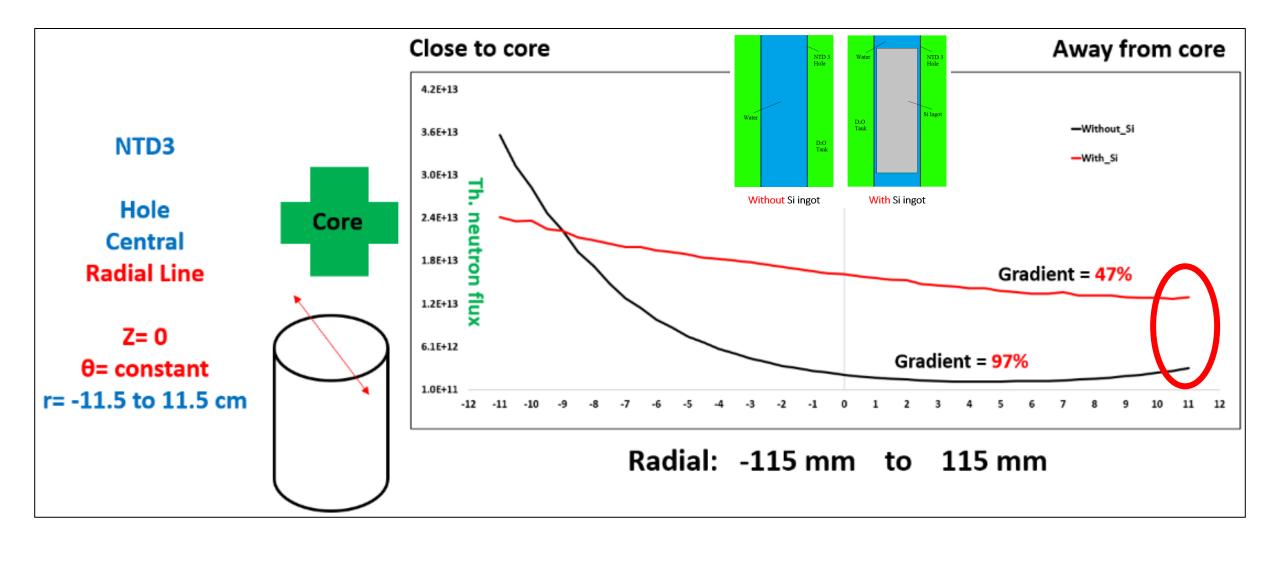





Th. neutron flux at NTD#3 at different points in time of cycle (BOC, MOC, EOC)

Axial [cm]

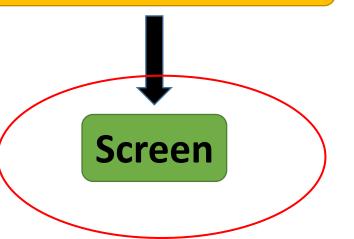
Axial Neutron Flux Distribution (McCARD)

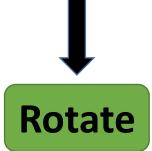


Radial Neutron Flux Distribution (McCARD)

3.4 Doping Uniformity Control

Hole: silicon ingot

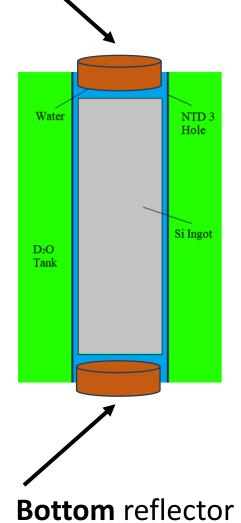

Gap: water with screen


Actual configuration

Optimum doping uniformity across all ingot volume (gradients)

Axial Uniformity

Radial Uniformity



	Type of Ingot	Type of flattening Filter (screen)	NTD Hole	Type of Reflector (top & bottom of ingot)	Max. Th. Flux [n.cm ⁻² .s ⁻¹]	Avg. Th. Flux [n.cm ⁻² .s ⁻¹]
	Si	Al sheet	NTD3	Aluminum	1.39E+13	1.28E+13
		+ Water		Graphite	1.43E+13	1.34E+13
		=		Silicon	1.40E+13	1.30E+13
		13.4 mm Gap		Water	1.41E+13	1.30E+13

3.5 Irradiation Capacity of Si ingots

(Estimation of Annual Production)

Constants

- Si density = 2.329 g/cm^3

- Si abundance = 3.0782 %

- Si-30 Molar Mass [g/mole] = 29.97377

- Si-30 Th. capture-XS = 107 mb

- Electron mobility, μe (@ 300K) = 1350

- Electron charge, qe = 1.602E-19 Coulomb

Assumptions

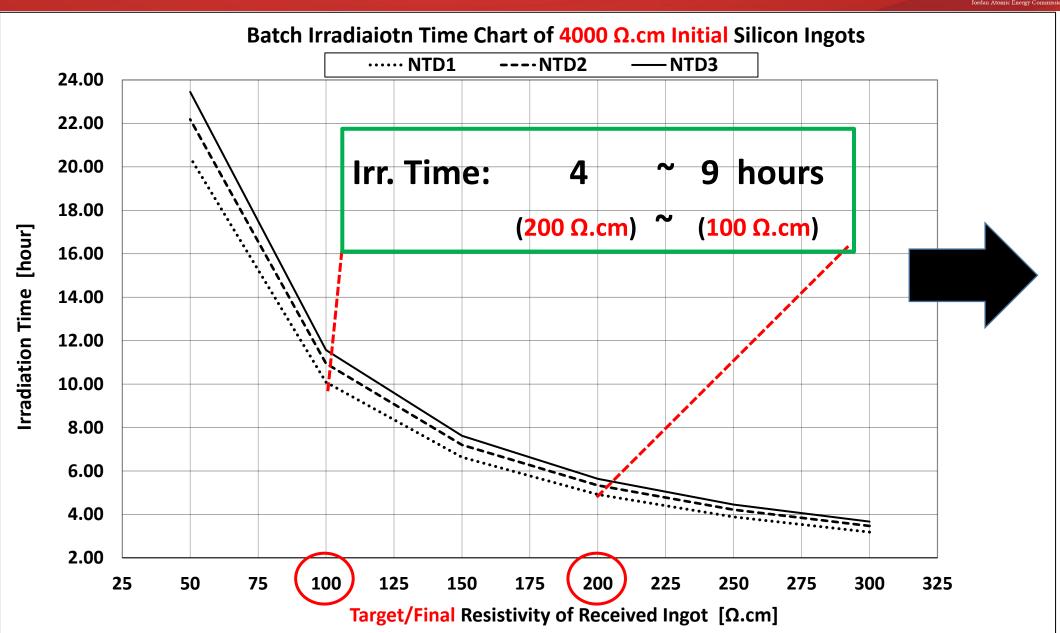
- Calc. fluxes using Monte Carlo Codes
- Effect of initial resistivity was subtracted
- Effective holes height = 50^{5} cm
- Full Op. days = $150^200 / \text{year}$

NTD Facility

- ➤ Height & Diameter for:
- NTD1,2,3
 Holes, batches (ingots)

	Ingot (14-Si-30)				
Silicon bulk density [g/cm^3]	rho	2.329			the dri	ift n
Si-ingot volume [cm^3]	v	17827.06			the drift	
tarting material amount (natural pure silicon)	ingots mass [g]	41519.23	41.52	kg		
Natural abundance of Si-30	θ	0.030872			Irr. calibrati	
Starting material amount	Si-30 mass [g]	1281.78	1.28	kg	relationship	
Avog. # (1/mol)	N_Avog.	6.022E+23			Telationship	, ,,,
M(gram/mol or [amu]) for parent nuclide	M [g/mol]	29.97377				
the Si ingots (2 or 3 in a batch of 60 cm)	No [#]	2.58E+25			Par	rent
the Si ingots (2 or 3 in a batch of 60 cm)	No [#/cm^3]	1.445E+21	1.445E+21	[#/cm^3]		
						lrr. c
						Т
Given initial risistivity	pi [Ω.cm]	4000	this ind	icates No.P [#/cm^3] to be	1.156E+12	
Required final risistivity	ρf [Ω.cm]	200	subtracted (less time)= this requires net Nact. [#/cm^3] to be =		2.20E+13	t
,	pr [zzrom]	200			LILULIA	4
al neutron capture cross-section of Si-30	σε [cm^2]	1.07E-25				
Thermal neutron Flux @ NTD3	φth [n/cm^2/sec]	7.00E+12				1
_						٠
Irradiation time	ta [s]	20299.34				
Irradiation time assuming no initial dopnats	ta [hr]	5.6				
liation time (without initial dopnats effects)	ta [hr]	5.64	338	min		
			_			H
eutron Fluence (Neutron Dose) @ NTD3		1.42E+17				
eutron Fluence (Neutron Dose) @ NTD3	φt [n/cm^2]					
eutron Fluence (Neutron Dose) @ NTD3						T
_ ,		-100%				
Rel. Err. [%]	RPE [%]	-100%				
Irradiation time	ta [sec]	20299.34				Ļ
Irradiation time	ta [hr]	5.64				
						+

Activation Equation **Excel**


Irradiation
Time ?

Tons

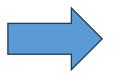
Tons?

JORDAN	RESEARCH AN	
Country	RR name	Annual Capacity (t)
Germany	FRM-II	15
Australia	OPAL	25
Jordan	JRTR	47.8 max
Poland	MARIA	15.7
China	CARR	50
China	HFTER	10
Belgium	BR2 (SIDONIE)	15
Check	LVR-15	1.5
Belgium	BR2 (POSEIDON)	45
South Africa	SAFARI-1	20
China	MJTR	20
Brazil	IAE-R1.	1.2
Korea	HANARO	20

	Initial resist	ivity [Ω.cm]	5000
Irr. Time:	Target resistivity [Ω.cm]		150
iri. Time:			
5.5 ~ 7.5 hours	Irradiation t	ime per 50cm	n batch [min]
	NTD1	NTD2	NTD3
FSAR (average flux, water medium, without screen, without graphite)	8.300E+12	7.400E+12	7.000E+12
	388	436	461
McCARD (min flux, silicon medium, without screen, without graphite)	9.662E+12	9.002E+12	9.277E+12
	334	358	348

E.g.: 150 days, 6", 6", 8" 150 Ω.cm → 33 ton

E.g.: 150 days, 6", 6", 8" 200 Ω.cm \Rightarrow 40 ton


E.g.: 200 days, 6", 6", 8" 150 Ω.cm → 44 ton

E.g.: 200 days, 6", 6", 8" 200 Ω.cm \Rightarrow 50 ton

Production [ton/year]:

up to 50~55

(depends on resistivity, Dia., and operation days)

Under conservative operation conditions:

150 FPD, 100% 8" & 30% 6"

23 tons

4. Financial Considerations

Item	Description / Status / Plan / Goal
2025 Demand	 ✓ Larger-diameter ingots (5", 6", and especially 8") has increased ✓ Driven by EV and HV-electronics markets
Key RR Suppliers	 ✓ OPAL (Australia), HANARO (S. Korea), and BR2 (Belgium) can process these sizes ✓ But overall supply still falls short of projected needs
Irradiation Service Pricing	 ✓ Negotiated case by case ✓ Commands a premium due to NTD's superior resistivity uniformity
Contracting	✓ International contractors will be invited to bid on design, construction, and commissioning

ltem	Description / Status / Plan / Goal
Project Timeline	 ✓ A 2-year design and installation phase ✓ All statutory levies and taxes incorporated into the capital budget
Production Scenario	 ✓ Conservative conditions: (150 FPDs/year, three holes in use, res. 4000 to 150) ✓ The facility expects to process roughly 20–25 tons of NTD-Si annually
Running Expenses	 ✓ Maintenance, staffing, and fuel, are projected to grow modestly over time ✓ But remain predictable
Revenue Assumptions	 ✓ Align with premium NTD service rates ✓ Adjusted for ingot size and resistivity ✓ The facility can cover costs and generate sustainable returns
Overall Plan	 ✓ JRTR's NTD-Si project is structured to meet global demand gaps ✓ While developing local technical expertise and industrial progress
Ultimate Goal	 ✓ By providing a reliable, high-quality irradiation service ✓ JRTR-NTD facility will enhance Jordan's role in the semiconductor supply chain ✓ Support long-term economic diversification

Summary of NTD Progress

- > Serious Plans for entering the NTD **Market** soon.
- Discussing with Partners.
- Collecting NTD Proposals:
 - ✓ Descriptive
 - ✓ Technical
 - ✓ Financial
- Stakeholders.
- > Manpower.
- Funding.

THANK YOU

ありがとう

